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Abstract

We study the problem of distributed stochastic non-convex optimization with intermittent
communication. We consider the full participation setting where M machines work in parallel
over R communication rounds and the partial participation setting where M machines are
sampled independently every round from some meta-distribution over machines. We propose and
analyze a new algorithm that improves existing methods by requiring fewer and lighter variance
reduction operations. We also present lower bounds, showing our algorithm is either optimal or
almost optimal in most settings. Numerical experiments demonstrate the superior performance
of our algorithm.

1 Introduction

We consider the following distributed optimization problem with M machines:

min
x∈Rd

F (x) :=
1

M

M∑
m=1

Fm(x), (1)

where Fm, which denotes the objective on machine m, is a non-convex function for all m, as is the
average objective F . We want to solve this problem in the intermittent communication (IC) setting
(Woodworth et al., 2018, 2021) where the machines work in parallel and are allowed to make K
oracle calls between two communication rounds for R consecutive rounds. The IC setting has been
widely studied (Zinkevich et al., 2010; Cotter et al., 2011; Dekel et al., 2012; Zhang et al., 2013, 2015;
Shamir et al., 2014; Stich, 2018; Dieuleveut and Patel, 2019; Woodworth et al., 2020a, 2021; Bullins
et al., 2021) over the past decade. Many recent works have focused on the problem with non-convex
and heterogeneous objectives (Koloskova et al., 2020; Khaled et al., 2020; Woodworth et al., 2020b)

∗Equal contribution.
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which are common in cross-device federated learning (FL) (McMahan et al., 2016; Kairouz et al.,
2019). Towards this end, several algorithms (Karimireddy et al., 2020b; Zhao et al., 2021; Khanduri
et al., 2021; Karimireddy et al., 2020a; Murata and Suzuki, 2021; Das et al., 2020), all involving
local updates (à la local-SGD (Zinkevich et al., 2010; McMahan et al., 2016)), have been proposed
and analyzed under assumptions bounding the heterogeneity of machines’ objectives. Although
these algorithms demonstrate promising empirical performances, it remains elusive whether these
algorithms provably dominate the embarrassingly parallelizable alternatives, i.e., mini-batch variants
of the optimal sequential algorithms (Nguyen et al., 2017; Fang et al., 2018; Cutkosky and Orabona,
2019) (a.k.a. centralized algorithms).

Until very recently, the situation was similar even in the simpler convex homogeneous setting
where Fm’s are all identical and convex, and Woodworth et al. (2021) showed that the optimal
algorithm often does not require local updates at all. Even when Fm’s are not identical, for high
levels of heterogeneity, accelerated mini-batch SGD (Ghadimi and Lan, 2012) is optimal (Woodworth,
2021). Should we expect something similar in the non-convex setting? Or, can we prove that in
some regime local-update algorithms improve over the naive centralized baselines?

In this paper, we start by noting that in the absence of any heterogeneity assumption (c.f.,
Section 2), centralized algorithms already have the best worst-case convergence guarantee. Thus,
only when the heterogeneity is low can the local-update algorithms potentially have an advantage.
This was the motivation behind some of the recent works (Karimireddy et al., 2020b,a; Murata
and Suzuki, 2021). However, in the absence of any lower bound that explicitly depends on the
heterogeneity parameter (such as in Woodworth et al. (2020b); Glasgow et al. (2022)), it is not
possible to definitively claim such an improvement. To alleviate this, we provide new communication
lower bounds which explicitly depends on the heterogeneity parameter. In addition, we develop
a novel algorithm which can take advantage of low heterogeneity and is (almost) optimal. We
summarize the contributions of our work as follows:

• We provide novel communication complexity lower bounds, under the assumption that Fm’s
have bounded first-order or second-order heterogeneity (see Section 2). We show that central-
ized algorithms (Nguyen et al., 2017; Fang et al., 2018; Cutkosky and Orabona, 2019) can
never achieve this optimal communication complexity, and most of the existing local-update
algorithms cannot attain it either.

• We develop a new algorithm CE-LSGD that we show to be min-max optimal when
equipped with exact gradient oracles and near-optimal when provided with stochastic
gradient oracles (c.f., Section 2). Our algorithm, like many other local-update algorithms,
uses variance reduction techniques (Nguyen et al., 2017; Cutkosky and Orabona, 2019) but
requires both fewer and lighter “heavy-batch” operations compared to the existing methods
(see discussion in Section 3).

• We also study the partial client participation setting, which is of particular interest in cross-
device federated learning (FL) (Kairouz et al., 2019) where there is an extremely large number
of clients. Not only does CE-LSGD improve over the best-known communication complexity,
but it is the only algorithm that doesn’t require exact oracle queries for variance reduction
and still manages to be nearly optimal. Our analysis also provides a convergence guarantee
for MB-STORM (a special case of CE-LSGD) in this setting that wasn’t known before.
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Method (Reference)
Convergence Rate, i.e. E ∥∇F (x̂)∥2 ⪯

(Oracles used)

Full Participation Setting

SCAFFOLD†, MB-SGD†

∆L
R +

(
σ2∆L
MKR

)1/2
(Karimireddy et al., 2020b)
(Stochastic)

MB-STORM (Theorem C.1)
∆L
R + σ2

MKR +
(

σ∆L
MKR

)2/3(Cutkosky and Orabona, 2019)
(Stochastic)

Lower Bound (Centralized)
∆L
R + σ2

MKR +
(

σ∆L
MKR

)2/3
(Theorem 2.9)

STEM
(∆L+ σ2 + ζ2)

(
1
R + 1

(MKR)2/3

)
(Khanduri et al., 2021)
(Stochastic)

BVR-L-SGD*

∆τ
R + ∆L√

KR
+ σ2

MKR +
(

σ∆L
MKR

)2/3(Murata and Suzuki, 2021)
CE-LSGD (Theorem 3.1)
(Stochastic)

CE-LGD (Theorem 3.1) ∆τ
R + ∆L

KR(Exact)

Lower Bound
min

{
∆τ
R , ζ

2

R

}
+ ∆L

KR + σ2

MKR +
(

σ∆L
MKR

)2/3
(Theorem 3.2)

Partial Participation Setting

MB-STORM (Theorem 4.8) ∆L
R + σ2

MKR +
(

σ∆L
m
√
KR

)2/3
+ ζ2

mR +
(
ζ∆L
mR

)2/3
(Stochastic)

Lower Bound (Centralized) ∆L
R + σ2

mKR +
(

σ∆L
mKR

)2/3
+ ζ2

mR +
(
ζ∆L
mR

)2/3
(Theorem 4.6)

MimeLiteMVR
∆τ
R + ∆L

KR + ζ2+σ2

R +
(
(ζ+σ)∆τ

R

)2/3
(Karimireddy et al., 2020a)
(Stochastic + Exact)

MimeMVR
∆τ
R + ∆L

KR + ζ2

mR +
(

ζ∆τ√
mR

)2/3
(Karimireddy et al., 2020a)
(Exact)

CE-LSGD (Theorem 4.3) ∆τ
R + ∆L√

KR
+ σ2

mKR +
(

σ∆L
mKR

)2/3
+
(

σ∆τ
m
√
KR

)2/3
+ ζ2

mR +
(
ζ∆τ
mR

)2/3
+
(

ζ∆L

m
√
KR

)2/3
(Stochastic)

CE-LGD (Theorem 4.3) ∆τ
R + ∆L

KR + ζ2

mR +
(
ζ∆τ
mR

)2/3
(Exact)

Lower Bound
min

{
∆τ
R , ζ

2

R

}
+ ∆L

KR + σ2

mKR +
(

σ∆L
mKR

)2/3
+ ζ2

mR +
(

ζ∆L
mKR

)2/3
(Theorem 4.5)

Table 1: Comparison of convergence rate for different algorithms in the intermittent communication
setting. ζ and τ are the first and second-order heterogeneity (see Section 2) of the problem. Note that
τ ≤ 2L can be much smaller than L. *See Section 3 for a detailed comparison with BVR-L-SGD.
We expect the red and blue terms in the bounds to match by improving our bounds (c.f., Section 6).
†The variance term is optimal as the algorithms’ analyses don’t assume mean squared smoothness.
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Method (Reference) Communication Complexity (R) Oracle Complexity (N)

Full Participation Setting

SCAFFOLD†, MB-SGD†
∆L
ϵ

σ2∆L
ϵ2(Karimireddy et al., 2020b)

MB-STORM (Theorem C.1) ∆L
ϵ

σ∆L
ϵ3/2(Cutkosky and Orabona, 2019)

Lower Bound (Centralized) ∆L
ϵ

σ∆L
ϵ3/2(Theorem 2.9)

STEM ∆L+σ2+ζ2

ϵ
(∆L)3/2+σ3+ζ3

ϵ3/2(Khanduri et al., 2021)

BVR-LSGD* (Murata and Suzuki, 2021) ∆τ
ϵ

σ∆L
ϵ3/2CE-LSGD (Theorem 3.1)

Lower Bound
min

{
∆τ
ϵ ,

ζ2

ϵ

}
σ∆L
ϵ3/2(Theorem 3.2)

Partial Participation Setting

MB-STORM ζ∆L
mϵ3/2

σ∆L
ϵ3/2

·
(
1 + σ

ζ

)
(Theorem C.1)

Lower Bound (Centralized) ζ∆L
mϵ3/2

σ∆L
ϵ3/2(Theorem 2.9)

MimeMVR ζ∆τ
m1/2ϵ3/2

Uses Exact Oracles
(Karimireddy et al., 2020a)

MimeLiteMVR ζ2+σ2

ϵ + (ζ+σ)∆τ

ϵ3/2
Uses Exact Oracles

(Karimireddy et al., 2020a)

CE-LSGD ζ∆τ
mϵ3/2

ζ∆L
ϵ3/2

· L
τ + σ∆L

ϵ3/2
·
(
1 + στ

ζL

)
(Theorem 4.3)

Lower Bound
min

{
∆τ
ϵ ,

ζ2

ϵ

}
+ ζ2

mϵ
ζ∆L
ϵ3/2

+ σ∆L
ϵ3/2(Theorem 4.5)

Table 2: Comparison of optimal communication and oracle complexity required by different algo-
rithms to attain E∥∇F (x̂)∥22 ≤ ϵ. ζ and τ are the heterogeneity (see Section 2) of the problem.
τ ≤ 2L and can be much smaller than L. The results suppress only numerical constants and assume
that ϵ1/2 ⪯ min{(σ/M) · (τ/L),∆L/σ,∆τ/ζ, ζ/m}, i.e., ϵ is small enough. The first inequality
ensures we are in the green regime described in Figure 1 and guarantees that ∆LM/ϵ ⪯ σ∆L/ϵ3/2;
the second inequality guarantees that σ2/ϵ ⪯ σ∆L/ϵ3/2; the third inequality guarantees that
ζ2/mϵ ⪯ ζ∆τ/mϵ3/2; and the fourth inequality guarantees that ∆L/ϵ ≤ ζ∆L/mϵ3/2. We expect the
red, green, and blue terms in the upper and lower bounds to match by improving our bounds (c.f.,
Section 6). *Although BVR-L-SGD and CE-LSGD have the same fast convergence rate in the full
participation setting, BVR-L-SGD requires each client to compute large batch gradients for many
rounds of communications and is thus less communication efficient in practice (see discussion in
Section 3). †Note that the oracle complexity is optimal for these algorithms, as they were analyzed
under the bounded variance assumption (see Section 2).

4



Furthermore, if endowed with exact oracles, CE-LGD is almost min-max optimal
even in the partial participation setting. Thus, our results demonstrate the optimality
of local update methods, at least in some regimes. Even in simpler convex settings, we don’t
know of any local update method (exact or stochastic) known to be min-max optimal in the
heterogeneous setting (Wang et al., 2022; Woodworth et al., 2020b). We summarize our results
and the comparison to important baselines in Tables 1 and 2.

• As an auxiliary contribution, we provide a variant of our algorithm which uses stochastic
hessian vector product oracles and is thus useful for settings where only a single copy of
the model can be stored on the edge device. We also empirically compare our method
against centralized and local-update algorithms, demonstrating faster convergence and better
communication efficiency.

Notation. We use B to denote the index set and |B| to denote its cardinality. For x ∈ Rd, we
use ∥x∥ to denote its ℓ2-norm. For A ∈ Rd×d, ∥A∥ denotes the operator norm. [n] denotes the set
{1, 2, . . . , n}. We use ≈,⪯,⪰ to denote equality and inequality up to numerical constants.

2 Our Setting and the Centralized Baselines

This section introduces some definitions and assumptions used in our analysis. Specifically, we
formalize the class of distributed problems we study, the oracle queries we allow on each machine,
and what our algorithms can do with those oracle queries. Our goal is to find an ϵ-approximate
stationary point of F , i.e., a point x ∈ Rd such that E[∥∇F (x)∥2] ≤ ϵ, where the expectation is
w.r.t. any randomness in the choice of x. Note the difference in the definition of an ϵ-stationary
point w.r.t. to references such as Arjevani et al. (2019); Cutkosky and Orabona (2019).

Problem Class

We consider client objectives in the class F(L) of differentiable and L-smooth functions, i.e., for all
f ∈ F(L),

∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ .

We also assume that the average objective has bounded sub-optimality at zero (the defacto initial-
ization point for all our algorithms). In particular we say that {Fm ∈ F(L)}Mm=1 ∈ FM (L,∆) if for
all ∆ ≥ 0, and F :=

∑
m∈[M ] Fm/M ,

F (0)− inf
x∈Rd

F (x) ≤ ∆.

Finally, we make assumptions that relate the functions of different clients to one another. These are
typically known as assumptions on the “heterogeneity” of the problem, and we consider two classes
of problems based on the heterogeneity assumption.

Definition 2.1. We say that {Fm}Mm=1 ∈ FM (∆, L) are first-order ζ-heterogeneous if,

sup
x∈Rd

1

M

M∑
m=1

∥∇Fm(x)−∇F (x)∥2 ≤ ζ2.

We denote such problems by writing {Fm}m∈[M ] ∈ F1
M(L,∆, ζ).
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This class of problems is often too restricted due to the first-order heterogeneity assumption (Wang
et al., 2022), which poses boundedness constraints on the gradients of the functions. Fortunately,
our algorithm only assumes the problem is in the following less restrictive class.

Definition 2.2. We say that twice-differentiable {Fm}Mm=1 ∈ FM (L,∆) are second-order τ -
heterogeneous if,

sup
m∈[M ],x∈Rd

∥∇2Fm(x) − ∇2F (x)∥ ≤ τ.

We denote such problems by writing {Fm}m∈[M ] ∈ F2
M(L,∆, τ ).

Remark 2.3. Note that even if the functions on each machine are L-smooth, they need not satisfy
the τ -second-order heterogeneity assumption. We can only say that τ must be smaller than 2L.
Thus, smoothness and heterogeneity assumptions are different kinds of restrictions on our functions.
τ = 0 implies that the functions on different clients can only differ in the linear part, while ζ = 0
implies that the functions can only differ in constant terms.

Oracle Class

The oracle framework is a very common abstraction in optimization literature (Nesterov et al.,
2018; Nemirovski, 1994; Woodworth et al., 2018), and an oracle call can be seen as a unit of
information and/or computation. This is especially useful when providing lower-bound results.
Stochastic optimization often considers single-point oracles that return unbiased function and
gradient estimators. However, several studies ((Arjevani et al., 2019), c.f., Section 5.3, (Woodworth
et al., 2021)) have shown separations between algorithms that can query the oracle and obtain
unbiased gradients just once for each random seed versus multiple times for the same seed. The
latter kind is a multi-point stochastic oracle, formally defined as follows.

Definition 2.4. Given a function G ∈ F(L), On,L,σ
G : (Rd)n ×Z → (R)n × (Rd)n is a multi-point

stochastic first order oracle if for some distribution D on Z, and for all x1, . . . , xn ∈ Rd, the oracle
samples a random seed z ∼ D and returns estimators

On,L,σ
G (x1, . . . , xn, z) =

(
{f(xi; z)}i∈[n], {g(xi; z)}i∈[n]

)
,

such that ∀i ∈ [n],

Ez∼D [(f(xi; z), g(xi; z))] = (G(xi),∇G(xi)) and Ez∼D

[
∥g(xi; z)−∇G(xi)∥2

]
≤ σ2.

Furthermore, the unbiased gradients satisfy L-mean smoothness, i.e., for all x, y ∈ Rd,

Ez∼D [∥g(x; z)− g(y; z)∥] ≤ L ∥x− y∥ .

In this paper, we assume each client m ∈ [M ] has access to a two-point stochastic oracle O2,L,σ
Fm

,
which is sufficient to implement popular variance-reduced algorithms. All the random seeds are
sampled independently across machines and time steps.

Remark 2.5. For empirical risk minimization (ERM), querying multiple times at the same seed
is easy. The z ∼ D corresponds to sampling a data point, and one could just use the same data
point multiple times. So even though the multi-point oracle is more powerful, in machine learning
applications, it is equally practical. Arjevani et al. (2019) prove all their results for an even stronger
oracle, called an active oracle (see section 5.2 in their paper), which better exploits the finite sum
structure of ERM problems, but we don’t consider active oracles in this paper.
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Remark 2.6. The mean(-squared) smoothness property is necessary to obtain a O(1/ϵ3/2) oracle
complexity in the serial optimization (M = 1) setting (Arjevani et al., 2019) for obtaining an
ϵ-stationary point. Usually, different constants are used to demarcate the L̄-mean-smoothness from
L-smoothness because one is a property of the oracle while the other of the objective (Arjevani et al.,
2019). We do not make this demarcation here to make the presentation simpler. In the setting of
stochastic optimization, where each machine’s objective is defined as Fm(·) := Ez∼Dm [f(·; z)] using
L-smooth functions f(·; z), these constants are the same, i.e., L̄ = L. Even though our results apply
more broadly, we have the distributed stochastic optimization problem in our minds throughout the
paper.

Remark 2.7. Arjevani et al. (2019) show that if a first-order oracle only satisfies the bounded
variance assumption but not the mean(-squared) smoothness assumption, Ω(1/ϵ2) queries must be
made to such an oracle to obtain an ϵ-stationary point. Distributed algorithms such as FedAvg,
Scaffold and MB-SGD only assume this weaker oracle, which explains the worse oracle complexity
these algorithms attain (c.f., Table 2).

Algorithm Class

We consider the problem of finding an approximate stationary point in the intermittent communi-
cation setting, where M machines work in parallel and are allowed to make K oracle calls during
each communication for R consecutive rounds. We refer the reader to Woodworth et al. (2018) for
a formal description of this setting in the graph oracle framework. Intermittent communication
is motivated by the sizeable gap between the wall-clock time C required for a single synchronous
communication and the time required per unit of computation T , say a single oracle call (McMahan
et al., 2016; Kairouz et al., 2019). For an efficient implementation, typically, we want our local
computation budget K to be comparable to C/T , i.e., we want to increase our computation load
per communication to match the time required for a single communication round. We consider a
generalization of zero respecting algorithms (Carmon et al., 2020) denoted by AZR in the intermittent
communication (IC) setting defined as follows.

Definition 2.8 (Distributed Zero-respecting Algorithms). Consider M machines in the IC setting,
each of which is endowed with an oracle Om : I × Z → V and a distribution Dm on Z. Let Imr,k
denote the input to the kth oracle call, leading up to the rth communication round on machine m.
An optimization algorithm initialized at 0 is distributed zero-respecting if:

1. for all r ∈ [R], k ∈ [K],m ∈ [M ], Imr,k is in ⋃
l∈[k−1]

supp
(
OFm(I

m
r,l; z

m
r,l ∼ Dm)

) ∪

 ⋃
n∈[M ],s∈[r−1],l∈[K]

supp
(
OFn(I

n
s,l; z

n
s,l ∼ Dn)

) ,

2. for all r ∈ [R], k ∈ [K],m ∈ [M ], Imr,k is a deterministic function (which is same across all the
machines) of ⋃

l∈[k−1]

OFm(I
m
r,l; z

m
r,l ∼ Dm)

 ∪

 ⋃
n∈[M ],s∈[r−1],l∈[K]

OFn(I
n
s,l; z

n
s,l ∼ Dn)

 ,
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3. at the rth communication round the machines only communicate vectors in ⋃
n∈[M ],s∈[r],l∈[K]

supp
(
OFn(I

n
s,l; z

n
s,l ∼ Dn)

) .

We denote this class of algorithms by AZR. Furthermore, if all the oracle inputs are the same
between two communication rounds, i.e., Imr,k = Ir ∈ I for all m ∈ [M ], k ∈ [K], r ∈ [R], then we say

that the algorithm is centralized, and denote this class of algorithms by Acent
ZR ⊂ AZR.

This class captures a very wide variety of distributed optimization algorithms, including mini-
batch SGD (Dekel et al., 2012), accelerated mini-batch SGD (Ghadimi and Lan, 2012), local SGD
(McMahan et al., 2016), as well as all the variance-reduced algorithms (Karimireddy et al., 2020a;
Zhao et al., 2021; Khanduri et al., 2021). Algorithms that are not distributed zero-respecting are
those whose iterates have components in directions about which the algorithm has no information,
meaning that in some sense, it is just “wild guessing”. We have also defined the smaller class of
centralized algorithms which includes algorithms such as mini-batch SARAH (Nguyen et al., 2017)
and mini-batch STORM (Cutkosky and Orabona, 2019). We first present a lower bound result
applicable to centralized algorithms.

Theorem 2.9 (Centralized Lower Bound). For all τ,∆, ζ, σ ≥ 0, and 2L ≥ τ , every algorithm
A ∈ Acent

ZR optimizing a problem in F1
M (L,∆, ζ) ∪ F2

M (L,∆, τ), with access to an oracle O2,L,σ
Fm

over

R ⪰ 1 communication rounds must output xAR such that

E
[∥∥∇F (xAR)∥∥2] ⪰ ∆L

R
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

.

The proof of this theorem follows the known oracle complexity lower bounds (Carmon et al., 2020;
Arjevani et al., 2019) and is included in Appendix A. This theorem shows that when heterogeneity
is large, i.e., τ ≈ L, mini-batch SARAH/STORM already achieves the optimal communication and
oracle complexity (see Table 2). Therefore, most existing methods including FedAvg (McMahan
et al., 2016), Scaffold (Karimireddy et al., 2020b) and FedPage (Zhao et al., 2021) can not
outperform these centralized baselines as their analyses do not benefit from small heterogeneity.
At the same time, this highlights the limitation of the centralized baselines, which do not improve
with lower heterogeneity. In other words, for algorithms in class Acent

ZR , the worst-case complexity
is similar for problems in F2

M (L,∆, 0) and F2
M (L,∆, 2L). Certain existing local-update algorithms

such as MimeMVR (Karimireddy et al., 2020a) and BVR-L-SGD (Murata and Suzuki, 2021) can
indeed improve upon centralized algorithms in the low heterogeneity regime. In the next section, we
quantify this improvement and show that our algorithm strictly dominates the centralized baselines
and almost matches our lower bound for algorithms in AZR.

3 Our Algorithm and Min-max Optimality

In this section we present our communication-efficient algorithm abbreviated CE-LSGD and
illustrate it in Algorithm 1. Note that for m ∈ [M ], we use the notation ∇Fm,Bm(x) :=∑

l∈Bm g(x; zl ∼ Dm)/|Bm| to denote the stochastic mini-batch gradient obtained by querying

O2,L,σ
Fm

for |Bm| many times, and ∇Fm,z(x) to denote a single stochastic gradient g(x; z ∼ Dm).
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At each iteration of Algorithm 1, we need two rounds of communication, i.e., two back and
forth communications between the server and all clients. Our method uses the extra round of
communication, i.e., line 4 to line 9, to update the variance-reduced gradient vr using the current
and previous server models xr, xr−1, respectively. In the following discussion, we will use the
iteration number R and communication complexity of Algorithm 1 interchangeably.

Algorithm 1 Communication Efficient Local Stochastic Gradient Descent (CE-LSGD)

input Initialization x0, communication round R, local steps K, step size η, momentum β ∈ [0, 1],
initial batch size b0

1: Let x−1 = x0
2: for r = 0, 1, . . . , R− 1 do
3: if r = 0 then
4: Set β = 1,K = 1, B = b0
5: else
6: Set β,K as the input values, B = K
7: end if
8: Communicate (send) (xr, xr−1) to clients
9: on client m ∈ [M ] do

10: Sample Bm
r ∼ D⊗B

m and compute ∇Fm,Bm
r
(xr) and ∇Fm,Bm

r
(xr−1), where |Bm

r | = B
11: Communicate (rec)

(
∇Fm,Bm

r
(xr),∇Fm,Bm

r
(xr−1)

)
to the server

12: end on client
13: vr =

1
M

∑M
m=1∇Fm,Bm

r
(xr) + (1− β)

(
vr−1 − 1

M

∑M
m=1∇Fm,Bm

r
(xr−1)

)
14: Communicate (send) (xr, vr) to client m̃r, where m̃r ∼ Unif ([M ])
15: on client m̃r do
16: wm̃r

r+1,1 := wm̃r
r+1,0 := xr, v

m̃r
r,0 := vr

17: for k = 1, . . . ,K do
18: Sample zm̃r

r,k ∼ Dm̃r
and compute ∇F

m̃r,z
m̃r
r,k

(wm̃r
r+1,k) and ∇F

m̃r,z
m̃r
r,k

(wm̃r
r+1,k−1)

19: vm̃r
r,k = ∇F

m̃r,z
m̃r
r,k

(wm̃r
r+1,k) + vm̃r

r,k−1 −∇F
m̃r,z

m̃r
r,k

(wm̃r
r+1,k−1)

20: wm̃r
r+1,k+1 = wm̃r

r+1,k − ηvm̃r
r,k

21: end for
22: Communicate (rec)

(
wm̃r
r+1,K+1

)
to the server

23: end on client
24: Let xr+1 = wm̃r

r+1,K+1

25: end for
output Choose x̃ uniformly from {wm̃r

r,k }r∈[R],k∈[K]

At the core of our proposed method is the variance reduction term vr and the local gradient
estimator vmr,k (lines 9 and 15 in Algorithm 1). The construction of the local gradient estimator is
motivated by the variance reduction technique of SARAH (Nguyen et al., 2017; Fang et al., 2018).
Intuitively, the estimation error between the proposed local gradient estimator vmr,k and the full
gradient ∇F (wm

r+1,k), i.e., E∥vmr,k −∇F (wm
r+1,k)∥, can be decomposed into two dominating terms:

E∥vr −∇F (xr)∥2 and τ2K
∑K

k=1 E∥wm
r+1,k − wm

r+1,k−1∥2 . The first term is the estimation error

between the variance reduction term vr and the full gradient∇F (xr). Since vr is updated based on the
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momentum-based variance reduction technique (Cutkosky and Orabona, 2019), this estimation error

is dominated by L2E∥xr − xr−1∥2 , which approaches zero as the algorithm converges. Similarly,

the second term E∥wm
r+1,k − wm

r+1,k−1∥2 approaches zero as the algorithm converges and the τ

factor controls the benefit we can obtain from small heterogeneity. Intuitively, we can make more
local updates for smaller values of τ , and the algorithm converges faster. Our method reduces to
mini-batch STORM if we choose the number of local updates K to be one (see Appendix C). Our
formal convergence result is as follows:

Theorem 3.1. Suppose {Fm}m∈[M ] ∈ F2
M (L,∆, τ) for L,∆, τ ≥ 0, τ ≤ 2L then,

(a) if each client m ∈ [M ] has a stochastic oracle O2,L,σ
Fm

, and assuming ∆L
R ⪯ σ2

√
MK

, then the output

x̃ of Algorithm 1 using β = max
{

1
R ,

(∆L)2/3(MK)1/3

σ4/3R2/3

}
, b0 = KR, and η = min

{
1
L ,

1
Kτ ,

(βM)1/2

LK1/2

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L√
KR

+
σ2

MKR
+

(
σ∆L

MKR

)2/3

;

(b) if each client m ∈ [M ] has a deterministic oracle O2,L,0
Fm

, then the output x̃ of Algorithm 1 using

β = 1 and η = min
{

1
L ,

1
Kτ

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L

KR
.

In Appendix B, we derive this result by carefully tuning β, b0. We show that the convergence
rate attained by our algorithm is almost optimal by proving the following lower bound result.

Theorem 3.2. For all L, σ, τ,∆, ζ ≥ 0, τ ≤ 2L, ζ ≤
√
∆L, every algorithm A ∈ Azr, optimizing

a problem in F1
M (L,∆, ζ) ∪ F2

M (L,∆, τ) with K > 0 intermittent accesses to two-point first-order

oracles {O2,L,σ
Fm

}m∈[M ] on all the machines, outputs xAR after R ⪰ 1 rounds such that

E
[∥∥∇F (xAR)∥∥2] ⪰ min

{
ζ2

R
,
∆τ

R

}
+

∆L

KR
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

.

We can make two observations by comparing the upper and lower bounds for problems in
F2
M (L,∆, τ). First, in the deterministic setting (σ = 0), our upper bound matches the lower bound;

hence CE-LGD is min-max optimal. Thus, our result improves over all the existing results in
this setting, including MimeMVR (Karimireddy et al., 2020a). Second, in the stochastic setting
(σ > 0), our algorithm’s upper bound is optimal except for the second term in Theorem 3.1, which
has a ∆L/(

√
KR) factor as opposed to the ∆L/(KR) term in the lower bound. We discuss this

gap further in Section 3.2.
Our construction for Theorem 3.2 uses the non-convex hard instance proposed by Carmon et al.

(2020) and splits it across different machines to get a communication complexity lower bound. This
idea has been used previously to give lower bounds in the heterogeneous setting (Arjevani and
Shamir, 2015; Woodworth et al., 2020b; Zhang et al., 2020). We prove the result in Appendix A.
From looking at Table 1, we can note that BVR-L-SGD (Murata and Suzuki, 2021) also attains
a similar upper bound as our method. In Appendix B, we show that with deterministic oracle
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BVR-L-SGD also attains the min-max optimal rate1. This is not surprising, knowing that several
variance-reduced algorithms (Fang et al., 2018; Cutkosky and Orabona, 2019; Nguyen et al., 2017)
are simultaneously optimal even in the sequential setting. Still, our method requires fewer and
lighter variance reduction operations, which leads to better scalability from the algorithmic design
perspective. In the next section, we carefully examine the difference between these methods.

3.1 The Perspective of Reducing Communication

Figure 1: Illustration of the best communication complexity R and oracle complexity N that
our method can obtain for different ϵ and τ . Green regime: Our method can obtain optimal
communication and oracle complexities. Orange regime: Our method can obtain the optimal
communication using a larger oracle complexity. Red regime: Our method only needs one round
of communication using a larger oracle complexity. L and τ are the smoothness and second-order
heterogeneity parameters, respectively.

So far, we have looked at convergence rates in the intermittent communication model, where
K,R is fixed. However, another perspective is reducing the communication complexity to the
minimum possible with the minimum required oracle complexity. Both these complexities can be
expressed in terms of ϵ using the convergence guarantees we showed, where we want to attain an
ϵ-approximate stationary point. This view is often more useful when communication rounds comprise
the bulk of the required physical time. This scenario is common in FL, where devices become
available intermittently, which delays the synchronous updates. With this in mind, we summarize
the communication and oracle complexities attained by both our method and BVR-L-SGD (Murata
and Suzuki, 2021) in Figure 1 when optimizing with stochastic oracles. Notice that the figure has
three different regimes based on the relative scaling of τ versus ϵ. We focus on the green regime
characterized by ϵ1/2 ∈ (0, τσ/(LM)]. This regime is of most practical interest in deep learning,

1Note that Murata and Suzuki (2021) don’t show how to get this rate, but we do so in Appendix B.
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where modern over-parameterized models often drive ϵ to really small values. And when ϵ is small
enough, this regime covers a wide range of values of τ .2.

Figure 2: Training loss of CE-LSGD and BVR-L-SGD on CIFAR-10 data-set versus the number
of communication rounds in the intermittent communication setting with different local-updates K.
We use M = 10 machines, and synthetically generate heterogeneous data-sets (see Section 5) with
q = 0.1. All oracle queries use a mini-batch of size b = 16, i.e., each machine has Kb oracle queries
between two communication rounds. We note that our method has a faster convergence in all the
settings, which highlights its communication efficiency. Fixed step-sizes η for both the methods
were tuned in {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} (to obtain best loss) following (Murata and Suzuki,
2021), our method set the momentum β = 0.3, bourmax = K, while bBV R

max = 5000 according to (Murata
and Suzuki, 2021).

In the green regime, both CE-LSGD and BVR-L-SGD require K = σL/(τMϵ1/2) local steps
to achieve the optimal communication and oracle complexities. However, BVR-L-SGD requires
multiple heavy-batch stochastic gradient computations on each machine with batch size bmax.
In particular, for BVR-L-SGD, we have ρBVR = bmax/K = στ/(Lϵ1/2), which suggests that for
S = L∆/σ

√
ϵ communication rounds, it requires each machine to compute ρBVR times heavier

batch stochastic gradients compared to the other communication rounds. As for CE-LSGD, we have
b0 = σ3/(L∆Mϵ1/2), which gives us ρour = b0/K = σ2τ/(L2∆). This suggests that our method only
requires each machine to compute ρour times larger batch stochastic gradient, and that too only
once. Furthermore, ρour/ρBVR = σϵ1/2/(L∆) ≤ 1. Thus, the size of our large batch gradient is also
smaller than the one for BVR-L-SGD, and our method has fewer and lighter heavy-batch
operations.

Suppose one implements both these methods in the intermittent communication model, i.e., by
breaking the large batch computation across multiple rounds, with local budget K = σL/(τMϵ1/2).
In that case, the effective communication complexity of both methods is ∆τ/ϵ, and this subtle
difference gets washed away. However, in Figure 2, we show that this equivalence up to numerical
constants doesn’t hold in practice, where our method converges faster than BVR-L-SGD. In Table
2, we summarize the communication and oracle complexities attained by different algorithms in the
green regime.

2We talk about the other regimes while giving the full statement of Theorem 3.1 in Appendix B
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3.2 The Gap in the Stochastic Setting

According to the results in Table 1, there is a gap between the convergence rates of CE-LSGD and
CE-LGD, which doesn’t go away when σ = 0. In particular, the brown term in CE-LGD’s upper
bound, which doesn’t depend on σ, matches the corresponding term in the lower bound, but the
brown term in CE-LSGD’s upper bound is worse by a factor of 1/

√
K. This result comes from a

more pessimistic choice of step size in the stochastic setting.
To elucidate this further, consider a more general communication model. Recall that each

machine makes K queries in the IC setting between two communication rounds. We can instead
consider the model where each machine is allowed to make Kb queries but at most at K different
inputs. Centralized algorithms will make just Kb queries at the same input. For instance, in this
model, MB-SGD or MB-STORM will make R updates with batch size MKb. However, local
update algorithms can make K “mini-batch” style queries, i.e., make b repeated queries at the
current local iterate. This oracle model has been studied for hierarchical parallelism (Lin et al.,
2018). For instance, let’s say each machine has access to a GPU. Then it is preferable that each local
update uses the largest batch size b = bmax that saturates the GPU’s capacity (such as its memory)
without additional parallel run-time when compared to b = 1. Modern specialized hardware for
deep learning (including FPGAs, TPUs, etc.) is designed with such parallelism, and bmax is usually
much larger than 1 (Shallue et al., 2018). Thus, if energy usage (i.e., more oracle queries) is a
non-concern and getting to an accurate solution as quickly as possible is most important, then it is
useful to consider this hierarchical setting. In this setting, we can attain the following convergence
guarantee for CE-LSGD.

Theorem 3.3. Suppose {Fm}m∈[M ] ∈ F2
M (L,∆, τ) for L,∆, τ ≥ 0, τ ≤ 2L, each client m ∈ [M ]

has a stochastic oracle O2,L,σ
Fm

which it uses through b-calls for every single query, and assume that

∆L
R ≤ σ2

√
MKb

. Then the output x̃ of Algorithm 1 using β = max
{

1
R ,

(∆L)2/3(MKb)1/3

σ4/3R2/3

}
, b0 = KbR

and η = min
{

1
L ,

1
Kτ ,

√
b√

KL
, (βMKb)1/2

LK

}
, satisfies the following

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+

(
σ∆L

MKbR

)2/3

+
σ2

MKbR
.

When b = 1, this reduces to Theorem 3.1 since the third term in the upper bound always
dominates the second term. In the exact setting as we show in Appendix B, the last three terms
go away altogether. Using arguments similar to the ones given in Appendix A (to prove Theorem
3.2), we can show that every term except the third term is tight in Theorem 3.3. We currently
don’t know how to get rid of the loose third term, but as apparent from the theorem, setting b = K
suffices to recover the min-max optimal guarantee even on the stochastic setting. This gap also
appears in the partial participation setting, which we study in the next section.

4 The Partial Participation Setting

In settings such as cross-device federated learning (Kairouz et al., 2019), there are often millions of
clients (think of android mobile users), and it is not feasible to consider training on all of the clients
synchronously. It is more natural to consider a partial sampling of clients for each communication
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round. More formally, we can re-state our distributed optimization problem as follows:

min
x∈Rd

F (x) := Em∼P [Fm(x)] , (2)

where P is a probability distribution on the clients, we assume at each communication round,
we can sample M clients independently from P. We also need to modify the IC setting: during
each communication round, Sr ∼ Pm clients participate, and each queries their oracle K times.
This setting has also been considered in Karimireddy et al. (2020a). We first need to formalize
the problem classes that we consider. We define F1

P(L,∆, ζ) and F2
P(L,∆, τ) that are natural

generalizations of F1
M (L,∆, ζ) and F2

M (L,∆, τ) to the partial participation setting as follows.

Definition 4.1. Consider any ζ,∆, L ≥ 0. And for all m in the support of P, assume that
Fm ∈ F(L), supx∈Rd En∼P∥∇Fn(x) − ∇F (x)∥2 ≤ ζ2 and F (0)− infx∈Rd F (x) ≤ ∆. Then we say
that our problem is in F1

P(L,∆, ζ).

Definition 4.2. Consider any τ,∆, L ≥ 0 and τ ≤ 2L. And for all m in the support of P,
assume Fm ∈ F(L) are twice-differentiable, supm∈support(P),x∈Rd ∥∇2Fm(x) − ∇2F (x)∥ ≤ τ , and

F (0)− infx∈Rd F (x) ≤ ∆. Then we say that our problem is in F2
P(L,∆, τ ).

We adapt Algorithm 1 to the partial participation setting in Algorithm 2 by communicating
with only M clients at each round and using M0 clients for the first round to initialize the variance
reduction term. We prove the following guarantee for Algorithm 2.

Theorem 4.3. Suppose for all m in support of P, Fm ∈ F1
P(L,∆, ζ) ∩ F2

P(L,∆, τ) then,

(a) if each client m has a stochastic oracle O2,L,σ
Fm

, and assuming that ∆τ
R + ∆L√

KR
⪯ σ2

√
MK

+ ζ2√
M
,

the output x̃ of Algorithm 2 using b0 = K, M0 =MR, β = max

{
1
R ,
(
∆(τ+L/

√
K)

√
M

R(σ2/K+ζ2)

)2/3}
, and

η = min
{

1
L ,

1
Kτ ,

1√
KL

,
√
βM√
KL

,
√
βM
τK

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L√
KR

+
σ2

MKR
+

(
σ∆L

MKR

)2/3

+
ζ2

MR
+

(
ζ∆τ

MR

)2/3

+

(
∆(στ + Lζ)

M
√
KR

)2/3

;

(b) if each client m has a deterministic oracle O2,L,0
Fm

, and assuming that ∆τ
R ⪯ ζ2√

M
, then the output

x̃ of Algorithm 2 using M0 = MR, β = max

{
1
R ,
(
∆τ

√
M

ζ2R

)2/3}
, and η = min

{
1
L ,

1
Kτ ,

√
βM
τK

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆τ

R
+

∆L

KR
+

ζ2

MR
+

(
ζ∆τ

MR

)2/3

.

In Tables 1 and 2, we show that with an exact oracle (i.e., σ = 0), CE-LGD attains a strictly
faster convergence rate than the best-known algorithm MimeMVR (Karimireddy et al., 2020a) that
also uses an exact oracle. More specifically, CE-LGD’s communication complexity ζ∆τ/Mϵ3/2,
improves over the communication complexity of ζ∆τ/

√
Mϵ3/2 for Mime-MVR. Further, we can

recover the following guarantee for MB-STORM in the partial participation setting, noting that it
is a special case of CE-LSGD (see Appendix C). As far as we know, this guarantee isn’t known in
the literature but straightforwardly follows from our analysis.
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Algorithm 2 CE-LSGD for Partial Participation

input Initialization x0, communication round R, local steps K, step size η, momentum β ∈ [0, 1],
initial batch size b0, initial client number M0

1: Let x−1 = x0
2: for r = 0, 1, . . . , R− 1 do
3: if r = 0 set β = 1,K = 1, B = b0, S =M0 else set β,K as the input values, B = K,S =M
4: Sample a subset Sr ∼ P⊗S of S clients
5: Communicate (send) (xr, xr−1) to clients m ∈ Sr

6: on client m ∈ Sr do
7: Compute ∇Fm,Bm

r
(xr) and ∇Fm,Bm

r
(xr−1), where |Bm

r | = B
8: Communicate (rec)

(
∇Fm,Bm

r
(xr),∇Fm,Bm

r
(xr−1)

)
to the server

9: end on client
10: vr =

1
|Sr|
∑

m∈Sr
∇Fm,Bm

r
(xr) + (1− β)

(
vr−1 − 1

|Sr|
∑

m∈Sr
∇Fm,Bm

r
(xr−1)

)
11: Communicate (send) (xr, vr) to client m̃r, where m̃r ∼ P
12: on client m̃ do
13: wm̃r

r+1,1 := wm̃r
r+1,0 := xr, v

m̃r
r,0 := vr

14: for k = 1, . . . ,K do
15: vm̃r

r,k = ∇F
m̃r,z

m̃r
r,k

(wm̃r
r+1,k) + vm̃r

r,k−1 −∇F
m̃r,z

m̃r
r,k

(wm̃r
r+1,k−1)

16: wm̃r
r+1,k+1 = wm̃r

r+1,k − ηvm̃r
r,k

17: end for
18: Communicate (rec)

(
wm̃r
r+1,K+1

)
to the server

19: end on client
20: Let xr+1 = wm̃r

r+1,K+1

21: end for
output Choose x̃ uniformly from {wm̃r

r,k }r∈[R],k∈[K]

Theorem 4.4. Suppose for all m in support of P, Fm ∈ F1
P(L,∆, ζ) ∩ F2

P(L,∆, τ), if each client

m has a stochastic oracle O2,L,σ
Fm

, and assuming that ∆L
R ⪯ σ2

√
MK

+ ζ2√
M
, then the output x̃ of MB-

STORM using b0 = K, M0 =MR, β = max

{
1
R ,
(

∆L
√
M

R(σ2/K+ζ2)

)2/3}
, and η = 1

KL ·min
{
1,
√
βM

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆L

R
+

σ2

MKR
+

(
σ∆L

M
√
KR

)2/3

+
ζ2

MR
+

(
ζ∆L

MR

)2/3

.

Furthermore, we prove the following lower bounds showing that the convergence rates of CE-
LSGD and MB-STORM are almost optimal for their respective algorithm classes.

Theorem 4.5. For all L, σ, τ,∆, ζ ≥ 0, τ ≤ 2L, ζ ≤
√
∆L, every algorithm A ∈ Azr optimizing

a problem in F1
P(L,∆, ζ) ∪ F2

P(L,∆, τ) with K > 0 intermittent accesses to two-point first-order

oracles {O2,L,σ
Fm

}m∈support(P) on all the machines outputs xAR after R ⪰ 1 rounds such that

E
[∥∥∇F (xAR)∥∥2] ⪰ min

{
∆τ

R
,
ζ2

R

}
+

∆L

KR
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

+
ζ2

MR
+

(
ζ∆L

MKR

)2/3

.
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Theorem 4.6. For all L, σ, τ,∆, ζ ≥ 0, τ ≤ 2L, ζ ≤
√
∆L, every algorithm A ∈ Acent

ZR optimizing
a problem in F1

P(L,∆, ζ) ∪ F2
P(L,∆, τ) with K > 0 intermittent accesses to two-point first-order

oracles {O2,L,σ
Fm

}m∈support(P) on all the machines outputs xAR after R ⪰ 1 rounds such that,

E
[∥∥∇F (xAR)∥∥2] ⪰ ∆L

R
+

σ2

MKR
+

(
σ∆L

MKR

)2/3

+
ζ2

MR
+

(
ζ∆L

MR

)2/3

.

According to Theorem 4.3 and Theorem 4.5, in the deterministic setting (i.e., σ = 0), the
only gap between the rate for CE-LGD and the lower bound is in the last term of CE-LGD’s
upper bound, i.e., the blue term in Table 1. We conjecture that CE-LGD is optimal in the
partial participation setting, and our lower bound can be improved. This would also
imply a gap between the optimal communication complexity of the full and partial participation
settings (O(1/ϵ) v/s O(1/ϵ3/2), see Table 2). All of the known results with our partial participation
setting (Karimireddy et al., 2020a) attain at best order 1/ϵ3/2 communication complexity, which is
consistent with our conjecture.

Having said that, we can most likely improve our upper bound for CE-LSGD as well. For
instance, note that the guarantee for MB-STORM, which follows from our general analysis for
CE-LSGD, has a gap w.r.t. the centralized lower bound in the third term, i.e., the red term in Table
1. This gap is most likely a result of our analysis and can be seen in the rate for CE-LSGD (red
terms in Table 1). However, if we consider the hierarchical setting described in Section 3.2, where
each oracle query is made b-times to get a gradient estimate, then we can recover the following
guarantees for CE-LSGD and MB-STORM.

Theorem 4.7. Suppose for all m in support of P, Fm ∈ F1
P(L,∆, ζ) ∩ F2

P(L,∆, τ), each client

m ∈ [M ] has a stochastic oracle O2,L,σ
Fm

which it uses through b-calls for every single query, and assume

that ∆τ
R + ∆L√

KbR
⪯ σ2

√
MKb

+ ζ2√
M
. Then the output x̃ of Algorithm 2 using b0 = Kb, M0 = MR,

β = max

{
1
R ,
(
∆(τ+L/

√
Kb)

√
M

R(σ2/Kb+ζ2)

)2/3}
, and η = min

{
1
L ,

1
Kτ ,

√
b√

KL
,
√
βM√
KbL

,
√
βM
τK

}
satisfies

E ∥∇F (x̃)∥2 ⪯ ∆τ

R
+
∆L

KR
+

∆L√
KbR

+
σ2

MKR
+

(
σ∆L

MKR

)2/3

+
ζ2

MR
+

(
ζ∆τ

MR

)2/3

+

(
∆(στ + Lζ)

M
√
KbR

)2/3

.

Theorem 4.8. Suppose for all m in support of P, Fm ∈ F1
P(L,∆, ζ) ∩ F2

P(L,∆, τ), if each client

m has a stochastic oracle O2,L,σ
Fm

which it uses through b-calls for every single query, and assume

that ∆L
R ⪯ σ2

√
MKb

+ ζ2√
M
. Then the output x̃ of MB-STORM using b0 = Kb, M0 = MR,

β = max

{
1
R ,
(

∆L
√
M

R(σ2/Kb+ζ2)

)2/3}
, and η = min

{
1

KL ,
√
βM
KL

}
satisfies

E∥∇F (x̃)∥2 ⪯ ∆L

R
+

σ2

MKbR
+

(
σ∆L

M
√
KbR

)2/3

+
ζ2

MR
+

(
ζ∆L

MR

)2/3

.

If we use similar arguments as in Appendix A (for proving Theorem 4.6), we can then show that
the upper bound for MB-STORM in Theorem 4.8 is optimal except for the third term. As for
CE-LSGD, by choosing b = K, the gap in the optimization term (brown term in Table 1) goes
away, just like the full-participation setting.
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5 Simulations

We evaluate the performance of our method by optimizing a two-layer fully connected network for
multi-class classification on the CIFAR-10 (Krizhevsky et al., 2009) dataset. Since we are in the
heterogeneous setting, we need to artificially generate a dataset. We follow the same data processing
procedure as in Murata and Suzuki (2021). We first make sure that all the ten classes in CIFAR-10
have the same number of samples (roughly around 5000), and assign q × 100% of class m’s samples
to client m ∈ [10], where q is chosen from {0.1, 0.35, 0.6, 0.85}. For each class m, we evenly split
the remaining (1− q)× 100% samples to the other 9 clients except client m. Thus, q controls the
heterogeneity of our dataset, with small q corresponding to small heterogeneity.

Figure 3: Comparing CE-LSGD to centralized and local-update methods, for fixed K = 32 and
varying heterogeneity controlled by q on CIFAR-10 (Krizhevsky et al., 2009) data-set. Like Figure 2
we use mini-batch size b = 16 for each oracle query. Thus each method makes Kb oracle queries
every round per machine. All the methods for different q are tuned separately, following a similar
hyper-parameter search as in Figure 2.

We perform two different experiments. In the first experiment, we directly compare our method,
i.e., CE-LSGD, with BVR-L-SGD in the intermittent communication setting (see Figure 2).
We observe that while both the methods converge to a similar quality of solution eventually, our
method is more communication efficient. In the second experiment, we compare our method with
BVR-L-SGD (Murata and Suzuki, 2021) as well as FedAvg (McMahan et al., 2016), SCAFFOLD
(Karimireddy et al., 2020b), MB-SARAH (Nguyen et al., 2017) and MB-SGD (Dekel et al., 2012)
for the same number of updates/iterations. The last two methods are centralized baselines, and
we use the local computation to compute a mini-batch stochastic gradient. We again observe that
CE-LSGD and BVR-L-SGD have comparable performance which is better than all the other
methods.
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6 Discussion and Open Problems

In this paper, we provide a new communication-efficient local update algorithm CE-LSGD and
analyze it in the full and partial client participation settings with intermittent communication. In
the deterministic setting, i.e., with access to exact oracles, our algorithm is optimal for the full
participation setting and almost optimal for the partial participation setting. Moreover, when
equipped with stochastic oracles, our algorithm attains the best-known convergence guarantees
to our knowledge in both participation models. Our lower bound results provide a much-needed
baseline to measure algorithmic developments in non-convex distributed optimization and help us
characterize CE-LGD’s optimality.

In Appendix E, we provide an extension of CE-LSGD which uses a stochastic Hessian vector
product oracle (Bullins et al., 2021; Arjevani et al., 2020) instead of a multi-point oracle, and
recovers similar optimal communication complexity. This is relevant for memory-constrained online
settings where it might not be feasible to preserve several copies of a model on the client device for
making simultaneous queries for variance reduction algorithms.

Our work leaves several open questions. We believe our lower bound is loose in the deterministic
partial participation setting. We expect a ζ∆τ/Mϵ3/2 term in the lower bound, just like our upper
bound in Theorem 4.3 (c.f., the blue terms in Tables 1 and 2). Thus, we conjecture that there is a
gap between the optimal communication complexities in the full and partial participation settings,
order 1/ϵ versus 1/ϵ3/2. We hope to improve our lower bound in the future work.

We expect that CE-LSGD should attain the min-max optimal rate in the stochastic full
participation setting. There is a 1/

√
K gap in our optimization term for both participation models,

which vanishes in the deterministic setting (see Table 1). As discussed in Section 3.2, it is unclear
to us how to remove this gap.

There are several gaps w.r.t. the lower bounds in the stochastic partial participation setting
(c.f., the blue, green, and red terms in Table 2). We believe some of these can be alleviated by
improving the deterministic lower bound, but others seem to imply that our analysis is loose. As we
discussed before, one indication that our upper bound is loose is the gap in the rate we obtain for
MB-STORM by adapting our analysis for Theorem 4.3 (c.f., the red term in Table 1).
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A Proof of Lower Bounds

In this section we prove Theorems 2.9, 3.2, 4.5 and 4.6. All of these results share the communication
complexity terms min{∆τ/ϵ, ζ2/ϵ}. We’d show that any algorithm in AZR no-matter whether it
uses an exact or stochastic oracle, with or without partial participation, and for any number of
oracle queries K between communication rounds must incur these many communication rounds. To
do so, we’d use the non-convex hard instance proposed by Carmon et al. (2020) and split it across
different machines similar to Arjevani and Shamir (2015); Woodworth et al. (2020b). Specifically,
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we consider the following functions (where we assume for simplicity d is even):

F (x) :=
F1(x) + F2(x)

2
, (3)

F1(x) := −ψ(x)ϕ(x1) +
d/2−1∑
i=1

[ψ(−x2i)ϕ(−x2i+1)− ψ(x2i)ϕ(x2i+1)] , (4)

F2(x) :=

d/2∑
i=1

[ψ(−x2i−1)ϕ(−x2i)− ψ(x2i−1)ϕ(x2i)] , (5)

where the component functions ψ(·) and ϕ(·) are defined as follows,

ψ(t) =

{
0, t ≤ 1/2,

exp
(
1− 1

(2t−1)2

)
, t > 1/2.

and ϕ(t) =
√
e

∫ t

−∞
e−

1
2
τ2dτ. (6)

The functions F1, F2 have the following interesting property: Let Ek be the span of first k basis
vectors, i.e., span(e1, . . . , ek). Note that when xk ∈ Ek and k is odd, we have

∇F1(xk) ∈ Ek and ∇F2(xk) ∈ Ek+1,

while when k is even,
∇F1(xk) ∈ Ek+1 and ∇F2(xk) ∈ Ek.

In our construction, half the machines will have the function F1, and the other half will have
the function F2 (assume M is even, we’d see later it only changes the lower bound by a factor
of M − 1/M). First, we initialize all the M machines at 0 and optimize using any distributed
zero-respecting algorithm (see Definition 2.8). Then, the only way to access the next coordinate is
to query the gradient of one of two functions—F1 if the next coordinate is odd and F2 if the next
coordinate is even. This means that, between two rounds of communication, at least one set of
machines can’t make any progress, and the other set of machines only learns about at most one new
coordinate. Thus, the machines are forced to communicate at least d− 1 times to be able to span
Rd. More formally, we can prove the following lemma:

Lemma A.1. For any vector v ∈ Rd, define supp (() v) = {i ∈ [d] : vi ̸= 0}. Let xR be the output
of any algorithm A ∈ AZR equipped with oracles {OFm}m∈[M ] on each machine, initialized at 0 and
optimizing the problem with F1 on the first half machines and F2 on the secocnd half. Then after
R rounds of communication,

supp ((xR)) ∈ ER.

The proof of this lemma is identical to Lemma 9 in Woodworth et al. (2020b). We’d use this
observation along with some properties of the hard instance to show our lower bound. In particular,
we note the following properties for the function F (·).

Lemma A.2 (Lemma 3 in Carmon et al. (2020)). The function F satisfies the following:

i. We have F (0)− infx F (x) ≤ ∆0d, where ∆0 = 12.

ii. For all x ∈ Rd, ∥∇F (x)∥ ≤ 23
√
d.
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iii. For every p ≥ 1, the p-th order derivatives of F are lp-Lipschitz continuous, where lp ≤
exp

(
5
2p log p+ cp

)
for an numerical constant c <∞. In particular l1 = 152 (c.f., Lemma 2.2

in Arjevani et al. (2019)).

Note that these properties imply the following for F (c.f., Lemma 2 in Carmon et al. (2020).).

Lemma A.3. For all x ∈ Ek, where k < d, ∥∇F (x)∥ ≥ 1.

In other words, if the model vector x doesn’t span Rd, it will be forced to have a large gradient.
And our distributed problem structure forces the iterates to lie in ER after R communication
rounds, as highlighted in Lemma A.1. Formalizing this idea results in the following communication
complexity lower bound:

Theorem A.4 (Communication complexity second-order). Any algorithm A ∈ Azr optimizing a
problem in F2

M (L,∆, τ), ∀ τ,∆ ≥ 0, 2L ≥ τ and with K > 0 intermittent accesses to {On,L,0
Fm

}m∈[M ]

on all the clients needs communication rounds,

R ≥ c1 ·
∆τ

ϵ

to output xAR such that E[
∥∥∇F (xAR)∥∥2] ≤ ϵ where ϵ < c2τ∆ and c1, c2 are numerical constants.

Proof. Let ∆0, l1 be the numerical constants as in Lemma A.2. Given accuracy parameter 0 < ϵ <
τ∆

4∆0l1
we define the following functions defined on Rd+1 → R,

F ⋆
1 (x) :=

τλ2

4l1
F1

(x1:d
λ

)
+
L

4
x2d+1, F

⋆
2 (x) :=

τλ2

4l1
F2

(x1:d
λ

)
+
L

4
x2d+1,

where λ := 4l1
τ ·

√
ϵ, and x1:d ∈ Rd denotes x ∈ Rd+1 restricted to the first d dimensions. For M > 2

we put F ⋆
1 on the first ⌊M/2⌋ machines, F ⋆

2 on the next ⌊M/2⌋ machines, and if M is odd we put

the zero function on the last machine. This only worsens the result by a factor of
(
M−1
M

)2
as we’d

see below, so we can assume without loss of generality that M is even. We define

F ⋆(x) :=
F ⋆
1 (x) + F ⋆

2 (x)

2
=
τλ2

4l1
F
(x1:d
λ

)
+
L

4
x2d+1

as the average objective of M machines. Further choosing d =
⌊

τ∆
4∆0l1ϵ

⌋
≥ 1 guarantees that (due to

Lemma A.2),

F ⋆(0)− inf
x
F ⋆(x) = F (0)− inf

x∈Rd
F (x) ≤ τλ2∆0

l1
· d =

4l1ϵ∆0

τ

⌊
τ∆

4∆0l1ϵ

⌋
≤ ∆.

Also, each of our objectives is L smooth as τ ≤ L. The second order heterogeneity of our problem
is bounded by τ as for all x,

1

2

∥∥∇2F ⋆
1 (x)−∇2F ⋆

2 (x)
∥∥ =

τ

8l1

∥∥∥∇2F1

(x
λ

)
−∇2F2

(x
λ

)∥∥∥ ≤ τ.

Thus, F ⋆
1 , F

⋆
2 characterize a distributed optimization problem which satisfies all our assumptions.

Now, we initialize our algorithm at 0. Then using Lemma A.1 we know that for all r ∈ [R], the
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output of the algorithm after r communication rounds, i.e., xr ∈ Er. In particular for r ∈ [d− 1]
using Lemma A.3 this implies that

E
[
∥∇F ⋆(xr)∥2

]
≥
(
τλ

4l1

)2

≥ ϵ.

Thus, if we want to achieve ϵ-stationarity, we need to communicate at least d− 1 times. In other
words,

R ≥ d− 1 ≥ 1

8∆0l1
· τ∆
ϵ
.

This concludes the proof of the theorem with c1 =
1

8∆0l1
and c2 =

1
4∆0l1

.

Similarly while optimizing problems in F1
M (L,∆, ζ) we can get the following communication

lower bound.

Theorem A.5 (Communication complexity first-order). Any algorithm A ∈ Azr optimizing a
problem in F1

M (L,∆, ζ), ∀ τ,∆ ≥ 0, ∆L ≥ ζ and with K > 0 intermittent accesses to {On,L,0
Fm

}m∈[M ]

on all the clients needs communication rounds,

R ≥ c1 ·
ζ2

ϵ

to output xAR such that E[
∥∥∇F (xAR)∥∥2] ≤ ϵ where ϵ < c2ζ

2 and c1, c2 are numerical constants.

Proof. Let ∆0, l1 be the numerical constants as in Lemma A.2. Given accuracy parameter 0 < ϵ <
ζ2

∆0l1
we define the following functions,

F ⋆
1 (x) :=

ζ2λ2

∆l1
F1

(x
λ

)
, F ⋆

2 (x) :=
ζ2λ2

∆l1
F2

(x
λ

)
,

where λ := ∆l1
ζ2

·
√
ϵ. For M > 2 we put F ⋆

1 on the first ⌊M/2⌋ machines, F ⋆
2 on the next ⌊M/2⌋

machines, and if M is odd we put the zero function on the last machine. This only worsens the

result by a factor of
(
M−1
M

)2
as we’d see below, so we can assume without loss of generality that M

is even. We define

F ⋆(x) :=
F ⋆
1 (x) + F ⋆

2 (x)

2

as the average objective of M machines. Further choosing d =
⌊

ecζ2

∆0l1ϵ

⌋
≥ 1 guarantees that (due to

Lemma A.2),

F ⋆(0)− inf
x
F ⋆(x) ≤ ζ2λ2∆0

∆l1
· d =

∆l1ϵ∆0

ζ2

⌊
ζ2

∆0l1ϵ

⌋
≤ ∆.

Also, each of our objectives is L smooth as ζ2/∆ ≤ L. The first order heterogeneity of our problem
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is bounded by ζ2 as for all x (upto numerical constants),

1

M

∑
m∈[M ]

∥∇Fm(x)− F (x)∥2 = 1

2
∥∇F ⋆

1 (x)−∇F ⋆
2 (x)∥

2 ,

=
ϵ

2

∥∥∥∇F1

(x
λ

)
−∇F2

(x
λ

)∥∥∥2 ,
≤ (23)2ϵd,

= (23)2ϵ

⌊
ζ2

∆0l1ϵ

⌋
,

≤ (23)2

∆0l1
· ζ2 ≤ ζ2,

where the last step follows from noting that ∆0 = 12, l1 = 152.
Thus, F ⋆

1 , F
⋆
2 characterize a distributed optimization problem in F1

M (L,∆, ζ). Now, we initialize
our algorithm at 0. Then using Lemma A.1 we know that for all r ∈ [R], the output of the algorithm
after r communication rounds, i.e., xr ∈ Er. In particular for r ∈ [d − 1] using Lemma A.3 this
implies that

E
[
∥∇F ⋆(xr)∥2

]
≥
(
ζ2λ

∆l1

)2

≥ ϵ.

Thus if we want to achieve, ϵ-stationarity we need to communicate at least d− 1 times. In other
words,

R ≥ d− 1 ≥ 1

2∆0l1
· ζ

2

ϵ
.

This concludes the proof of the theorem with c1 =
1

2∆0l1
and c2 =

1
∆0l1

Note that Theorems A.5 and A.4 imply a non-trivial lower bound even if the clients are allowed
infinite oracle accesses between two communication rounds, i.e., K → ∞ in the intermittent
communication setting. Next, we combine these results with known first-order oracle complexity
lower bounds to get the stated theorem statements. We begin by first re-stating theorem 3.2.

Theorem A.6 (General Lower Bound). For all L, σ,∆ ≥ 0, every algorithm A ∈ Azr, optimizing a
problem in F1

M (L,∆, ζ) ∪ F2
M (L,∆, τ) where τ/2, ζ2/∆ ≤ L, and with K > 0 intermittent accesses

to two-point first-order oracles {O2,L,σ
Fm

}m∈[M ] on all the machines, outputs xAR after R ≥ c2 rounds
such that,

E
[∥∥∇F (xAR)∥∥2] ≥ c1 ·

(
min

{
ζ2

R
,
∆τ

R

}
+

∆L

KR
+

σ2

MKR
+

(
σ∆L

MKR

)2/3
)
,

where c1, c2 are numerical constants.

Proof. Note that using Theorems A.5 and A.4 for any problem in F1
M (L∆, ζ) ∪ F2

M (L,∆, τ) we’ve

proven that, the communication complexity is lower bounded by min
{

∆τ
ϵ ,

ζ2

ϵ

}
when τ/2, ζ2/∆ ≤ L

and c2 · ϵ ≤ ·min{τ∆, ζ2} (where 1/c2 is the maximum of the numerical constants appearing in A.5
and A.4). This implies the first two terms in the lower bound for R ≥ c1.
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To get the second term, we put the function F on all the machines and endow the machines
with exact oracles, i.e., σ = 0. Since the oracle is queried at the same input on all the machines,
as well as returns the same fixed output, the M machines can be simulated by a single machine.
Furthermore, a single query to O2,L,0

F at two different points v, w ∈ Rd is equivalent to querying the

oracle O1,L,0
F two times at v, w. Thus, we can implement any algorithm A ∈ Acent

ZR which requires

K total intermittent accesses to O2,L,0
F for all m ∈ [M ], by instead considering a single machine

with 2K intermittent accesses to O1,L,0
F . Due to Carmon et al., we know that the latter problem

requires at least ∆L/ϵ oracle calls, which implies that our parallel problem requires at least ∆L/(Kϵ)
communication rounds. This gives the second term.

Finally, due to Arjevani et al. (2019), any zero respecting algorithm optimizing F requires at
least σ2/ϵ+ σ∆L/ϵ3/2 stochastic oracle calls to an active oracle (i.e., an oracle which takes as input
both the query point and the random seed, c.f., Section 5.2 in Arjevani et al. (2019)) which is strictly
more powerful than O2,L,σ

F . Thus, if we put Fm = F on all machines, and give each machine active
oracles, then the oracle queries must be lower bounded by 2MKR ≥ σ2/ϵ+ σ∆L/ϵ3/2. This in turn
proves a lower bound on the queries to the weaker O2,L,σ

F oracles and proves the final two terms.
We choose c1 as the minimum of the numerical constants coming from Theorems A.5, A.4,

Carmon et al. (2020) and Arjevani et al. (2019).

Similarly we can prove Theorem 2.9.

Theorem A.7 (Centralized Lower Bound). For all L,∆, σ ≥ 0, every algorithm A ∈ Acent
ZR

optimizing a problem in F1
M (L,∆, ζ) ∪ F2

M (L,∆, τ) where τ/2, ζ2/∆ ≤ L, and with access to an

oracle O2,L,σ
Fm

over R ≥ c1 communication rounds must output xAR such that

E
[∥∥∇F (xAR)∥∥2] ≥ c2 ·

(
∆L

R
+

σ2

MKR
+

(
σ∆L

MKR

)2/3
)
,

where c1, c2 are numerical constants.

Proof. The last two oracle complexity terms follow the same way as in Theorem 3.2 due to Arjevani
et al. (2019). We only need to show how to get the higher first term. For this we use the argument
in Carmon et al. (2020). We put the function F on all the machines and endow the machines with
exact oracles, i.e., σ = 0. Moreover, since this a homogeneous problem, τ, ζ = 0 for this distributed
problem. Furthermore, since the oracle is queried at the same input on all the machines, as well
as returns the same fixed output, the M machines can be simulated by a single machine. A single
query to O2,L,0

F at two different points v, w ∈ Rd is equivalent to querying the oracle O1,L,0
F two

times at v, w. Thus, we can implement any algorithm A ∈ Acent
ZR which requires K total intermittent

accesses to O2,L,0
F for all m ∈ [M ], by instead considering a single machine with 2 intermittent

accesses to O1,L,0
F . Due to Carmon et al. we know that the latter problem requires at least ∆L/ϵ

oracle calls, which implies that our parallel problem requires at least ∆L/ϵ communication rounds.
This gives the first term of the lower bound.

Finally, for the partial participation case, we need to argue about one additional term. We first
re-state the formal result.

Theorem A.8 (Partial participation lower bound). For all L, σ,∆ ≥ 0 every algorithm A ∈ Azr

optimizing a problem in F1
P(L,∆, ζ)∪F2

P(L,∆, τ) where τ/2, ζ
2/∆ ≤ L, and withK > 0 intermittent
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accesses to two-point first-order oracles {O2,L,σ
Fn

}n∈support(P) on all the machines outputs xAR after
R ≥ c1 rounds such that,

E
[∥∥∇F (xAR)∥∥2] ≥ c2 ·

(
min

{
ζ2

R
,
∆τ

R

}
+

∆L

KR
+

σ2

mKR
+

(
σ∆L

mKR

)2/3

+
ζ2

mR
+

(
ζ∆L

mKR

)2/3
)
,

where c1, c2 are numerical constants.

Proof. Except for the last two terms, all the other terms follow from the full-participation case
lower bound, i.e., Theorem 3.2. To get these terms, we first put an exact two-point oracle on each
machine so σ = 0. Now note that the distributed optimization problem in the partial participation
case is just a stochastic optimization problem, where the randomness comes from sampling the
machine n ∼ P. Moreover, by sampling a machine n ∼ P, we can emulate a stochastic gradient
oracle, with variance bounded by ζ2, (due to the first-order heterogeneity condition) and where the
stochastic gradients satisfy the mean squared smoothness condition (because the functions on all the
machines are L-smooth). Thus for the last term we can simply use the lower bound of Arjevani et al.
(2019) for any zero respecting first order algorithm that makes mKR active oracle calls, i.e., the
same argument that gave us the variance terms in the lower bound of theorem A.6. And the reason
the second last term doesn’t have a factor of K, is because we only see mR machines/samples, and
through statistical estimation results we know that the sample complexity lower bound (which is

stronger than the lower bound for an active oracle) should be ζ2

mR (c.f., Lemmas 10, 11 in Arjevani
et al. (2019)).

Finally, prove the centralized lower bound for the partial participation setting in theorem 4.6.

Theorem A.9 (Centralized Partial Participation Lower Bound). For all L,∆, σ ≥ 0, every algorithm
A ∈ Acent

ZR optimizing a problem in F1
P(L,∆, ζ)∪F2

P(L,∆, τ) where τ/2, ζ
2/∆ ≤ L, and with access

to an oracle O2,L,σ
Fm

over R ≥ c1 communication rounds must output xAR such that

E
[∥∥∇F (xAR)∥∥2] ≥ c2 ·

(
∆L

R
+

σ2

mKR
+

(
σ∆L

mKR

)2/3

+
ζ2

mR
+

(
ζ∆L

mR

)2/3
)
,

where c1, c2 are numerical constants.

Proof. The first three terms follow from the proof of theorem 2.9. For the last two terms, we consider
a similar argument as in the proof of theorem 4.5, i.e., we assume all machines have exact oracles,
and hence the only source of randomness is the sampling of machines from the distribution P.
The difference with respect to distributed zero respecting algorithms is that centralized algorithms
can be simulated by a single query K = 1, because they make queries at the same point within a
communication round and hence with exact oracles, only a single query is required per machine
per communication round. Thus, centralized algorithms can be simulated by mR queries to active
oracles with bounded variance ζ2 and L mean squared smoothness. Thus, the last two terms have a
factor of mR as opposed to mKR as in theorem 4.3. This completes the proof.

B Proof of Theorem 3.1

In this section, we provide the full statement of Theorem 3.1 and its corresponding proofs. We first
present the full theorem of Theorem 3.1.
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Theorem B.1. Suppose {Fm}m∈[M ] ∈ F2
M (L,∆, τ) for L,∆, τ ≥ 0 then,

(a) if each client m ∈ [M ] has a stochastic oracle O2,L,σ
Fm

, and assuming ∆L
R ≤ σ2

√
MKb

, then the output

x̃ of Algorithm 1 using

β = max

{
1

R
,
(∆L)2/3(MKb)1/3

σ4/3R2/3

}
, b0 = KR, η = c1 ·min

{
1

L
,

1

Kτ
,

1√
KL

,
(βMK)1/2

LK

}
,

satisfies the following

E∥∇F (x̃)∥2 ≤ c2 ·
(
∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+

(
σ∆L

MKbR

)2/3

+
σ2

MKbR

)
.

(b) if each client m ∈ [M ] has a deterministic oracle O2,L,0
Fm

, then the output x̃ of Algorithm 1 using

β = 1 and η = min
{

1
L ,

1
Kτ

}
satisfies,

E∥∇F (x̃)∥2 ≤ c3 ·
(
∆τ

R
+

∆L

KR

)
,

where c1, c2, c3 are numerical constants.
In addition, if we have ϵ1/2 ≤ στ/(LM), ϵσ2 ≤ (∆L)2, and Mϵ1/2 ≤ min{σ, σ3/(L∆)}, then

Algorithm 1 using K = σL/(Mτϵ1/2), b0 = σ3/(L∆Mϵ1/2), β = Lϵ1/2/(στ) can achieve the
ϵ-approximate stationary point with the following communication and gradient complexities

R ≤ c4
∆τ

ϵ
and N ≤ c5

∆Lσ

ϵ3/2
,

where c4, c5 are numerical constants.

Proof of Theorem B.1 and Three Regimes in Figure 1. In the following proof, we assume that each
client can use a mini-batch gradient with batch size b, which can give us a more general result. First
of all, we will bound the term ∥wj

r+1,k − xr∥2 for each client at local updates. Let’s consider the
local updates for client j. For k > 1, we have

∥wj
r+1,k − xr∥2 = ∥wj

r+1,k−1 − ηvjr,k−1 − xr∥2

≤
(
1 +

1

K

)
∥wj

r+1,k−1 − xr∥2 + (1 +K)η2∥vjr,k−1∥
2

≤
(
1 +

1

K

)
∥wj

r+1,k−1 − xr∥2 + 2(1 +K)η2∥vjr,k−1 −∇F (wj
r+1,k−1)∥

2

+ 2(1 +K)η2∥∇F (wj
r+1,k−1)∥

2.
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Therefore, recursively using the above inequality and the fact that wj
r+1,1 = xr, we can obtain

∥wj
r+1,k − xr∥2 ≤ 2(1 +K)η2

k∑
l=2

(
1 +

1

K

)k−l

∥vjr,l−1 −∇F (wj
r+1,l−1)∥

2

+ 2(1 +K)η2
k∑

l=2

(
1 +

1

K

)k−l

∥∇F (wj
r+1,l−1)∥

2

≤ 2e(1 +K)η2
K∑
k=2

∥vjr,k−1 −∇F (wj
r+1,k−1)∥

2 + 2e(1 +K)η2
K∑
k=2

∥∇F (wj
r+1,k−1)∥

2

= 2e(1 +K)η2
K−1∑
k=1

∥vjr,k −∇F (wj
r+1,k)∥

2 + 2e(1 +K)η2
K−1∑
k=1

∥∇F (wj
r+1,k)∥

2. (7)

Next, we will bound the estimation error between the local gradient estimator and the full
gradient E∥vjr,k − ∇F (wj

r+1,k)∥
2. According to the definition vjr,k = ∇F

j,Bj
r,k
(wj

r+1,k) + vjr,k−1 −

∇F
j,Bj

r,k
(wj

r+1,k−1), we have

E∥vjr,k −∇F (wj
r+1,k)∥

2

= E
∥∥(vjr,k−1 −∇F (wj

r+1,k−1)
)

+
(
∇F

j,Bj
r,k
(wj

r+1,k)−∇F
j,Bj

r,k
(wj

r+1,k−1)−∇Fj(w
j
r+1,k) +∇Fj(w

j
r+1,k−1)

)
+
(
∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

)∥∥2
= E

∥∥∇F
j,Bj

r,k
(wj

r+1,k)−∇F
j,Bj

r,k
(wj

r+1,k−1)−∇Fj(w
j
r+1,k) +∇Fj(w

j
r+1,k−1)

∥∥2
+ E

∥∥(vjr,k−1 −∇F (wj
r+1,k−1)

)
+
(
∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

)∥∥2
≤ L2

b
E∥wj

r+1,k − wj
r+1,k−1∥

2 +

(
1 +

1

K

)
E∥vjr,k−1 −∇F (wj

r+1,k−1)∥
2

+ (1 +K)E
∥∥∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

∥∥2,
where the second equality is due to the independence of the random variables, the inequality comes
from the fact that the mini-batch gradients consist of b i.i.d. samples, and each client m ∈ [M ] has
the stochastic oracle O2,L,σ

Fm
. Therefore, using the above inequality recursively, we can get

E∥vjr,k −∇F (wj
r+1,k)∥

2

≤ eE∥vjr,0 −∇F (wj
r+1,0)∥

2 +
eL2

b

K∑
k=1

E∥wj
r+1,k − wj

r+1,k−1∥
2

+ e(1 +K)

K∑
k=1

E
∥∥∇Fj(w

j
r+1,k)−∇Fj(w

j
r+1,k−1) +∇F (wj

r+1,k−1)−∇F (wj
r+1,k)

∥∥2. (8)
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Since {Fm}m∈[M ] ∈ F2
M (L,∆, τ), by the second-order τ -heterogeneity and Lemma 3 in Karimireddy

et al. (2020a), equation 8 implies that

E∥vjr,k −∇F (wj
r+1,k)∥

2

≤ eE∥vjr,0 −∇F (wj
r+1,0)∥

2 +

(
eL2

b
+ 8eKτ2

) K∑
k=1

E∥wj
r+1,k − wj

r+1,k−1∥
2

≤ eE∥vjr,0 −∇F (wj
r+1,0)∥

2 + 2η2
(
eKL2

b
+ 8eK2τ2

)
1

K

K∑
k=1

E∥vjr,k−1 −∇F (wj
r+1,k−1)∥

2

+ 2η2
(
eKL2

b
+ 8eK2τ2

)
1

K

K∑
k=1

E∥∇F (wj
r+1,k−1)∥

2,

where the second inequality is due to the updating rule as well as adding and subtracting the term
∇F (wj

r+1,k−1). As a result, if we choose η ≤ 1/(CKτ) and η ≤
√
b/(C ′√KL), and the fact that

wj
r+1,0 = wj

r+1,1 = xr, we can obtain

1

K

K∑
k=1

E∥vjr,k −∇F (wj
r+1,k)∥

2 ≤ 2eE∥vr −∇F (xr)∥2 +
1

6K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2. (9)

Given the above results, we are ready to establish the convergence guarantee of Algorithm 1.
For client m̃ sampled at t-th iteration for the local update, we have

F (wm̃
r+1,k+1) ≤ F (wm̃

r+1,k) + ⟨∇F (wm̃
r+1,k), w

m̃
r+1,k+1 − wm̃

r+1,k⟩+
L

2
∥wm̃

r+1,k+1 − wm̃
r+1,k∥2

= F (wm̃
r+1,k)− η⟨∇F (wm̃

r+1,k), v
m̃
r,k⟩+

η2L

2
∥vm̃r,k∥2

= F (wm̃
r+1,k)− η⟨∇F (wm̃

r+1,k), v
m̃
r,k −∇F (wm̃

r+1,k) +∇F (wm̃
r+1,k)⟩+

η2L

2
∥vm̃r,k∥2

≤ F (wm̃
r+1,k)− η∥∇F (wm̃

r+1,k)∥2 − η⟨∇F (wm̃
r+1,k), v

m̃
r,k −∇F (wm̃

r+1,k)⟩
+ η2L∥vm̃r,k −∇F (wm̃

r+1,k)∥2 + η2L∥∇F (wm̃
r+1,k)∥2

≤ F (wm̃
r+1,k)− η

(
3

4
− ηL

)
∥∇F (wm̃

r+1,k)∥2 + η(1 + ηL)∥vm̃r,k −∇F (wm̃
r+1,k)∥2

≤ F (wm̃
r+1,k)−

η

2
∥∇F (wm̃

r+1,k)∥2 +
5

4
η∥vm̃r,k −∇F (wm̃

r+1,k)∥2,

where the last inequality is due to the fact that η ≤ 1/(4L). Therefore, we can obtain that

∥∇F (wm̃
r+1,k)∥2 ≤

2

η

(
F (wm̃

r+1,k)− F (wm̃
r+1,k+1)

)
+ 3∥vm̃r,k −∇F (wm̃

r+1,k)∥2.

Recall that wm̃
r+1,1 = xr and wm̃

r+1,k+1 = xr+1, averaging from k = 1, . . .K, and taking expectation,
we can get

1

K

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2 ≤

2

Kη

(
EF (xr)− EF (xr+1)

)
+

3

K

K∑
k=1

E∥vm̃r,k −∇F (wm̃
r+1,k)∥2. (10)
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Combining equation 9 and equation 10, we can obtain

1

K

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2 ≤

2

Kη

(
EF (xr)− EF (xr+1)

)
+ 6eE∥vr −∇F (xr)∥2+

+
1

2K

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2,

which implies that

1

K

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2 ≤

4

Kη

(
EF (xr)− EF (xr+1)

)
+ 12eE∥vr −∇F (xr)∥2. (11)

Averaging equation 11 from t = 0, . . . , R− 1, we can obtain

1

RK

R−1∑
r=0

K∑
k=1

E∥∇F (wm̃
r+1,k)∥2 ≤

4

RKη

(
EF (x0)− EF (xr)

)
+

12e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2,

by the definition of x̃, we have

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

12e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2. (12)

Next, we consider the estimation error between vr and ∇F (xr). Recall that we have

vr =
1

M

M∑
j=1

∇F
j,Bj

r
(xr) + (1− β)

(
vr−1 −

1

M

M∑
j=1

∇F
j,Bj

r
(xr−1)

)
,

thus we obtain that

vr −∇F (xr) = (1− β)
(
vr−1 −∇F (xr−1)

)
+ β

(
1

M

M∑
j=1

∇F
j,Bj

r
(xr)−∇F (xr)

)

+ (1− β)

(
1

M

M∑
j=1

∇F
j,Bj

r
(xr)−

1

M

M∑
j=1

∇F
j,Bj

r
(xr−1) +∇F (xr−1)−∇F (xr)

)
.

Therefore, consider the conditional expectation up to r-th iteration, we have

Er

∥∥vr −∇F (xr)
∥∥2 ≤ (1− β)2Er

∥∥vr−1 −∇F (xr−1)
∥∥2

+ 2β2Er

∥∥∥∥ 1

M

M∑
j=1

∇F
j,Bj

r
(xr)−

1

M

M∑
j=1

∇Fj(xr)

∥∥∥∥2
+ 2(1− β)2

L2

MKb
Er

∥∥xr − xr−1

∥∥2
≤ (1− β)2Er

∥∥vr−1 −∇F (xr−1)
∥∥2 + 2β2

σ2

MKb

+ 2(1− β)2
L2

MKb
Er

∥∥xr − xr−1

∥∥2, (13)
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where the first inequality is due to the fact that the mini-batch gradients consists of b i.i.d. samples
and each client has the stochastic oracle O2,L,σ

Fm
, and the last inequality is due to the stochastic

oracle O2,L,σ
Fm

. Therefore, taking expectations over all iterations for equation 13, we can get

E
∥∥vr −∇F (xr)

∥∥2 ≤ (1− β)2E
∥∥vr−1 −∇F (xr−1)

∥∥2 + 2β2
σ2

MKb

+ 2(1− β)2
L2

MKb
E
∥∥xr − xr−1

∥∥2. (14)

Furthermore, we have

β
R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − (1− β)
R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R∑
r=1

E
∥∥vr −∇F (xr)

∥∥2 − (1− β)
R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vR −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤
R∑

r=1

E
∥∥vr −∇F (xr)

∥∥2 − (1− β)2
R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vR −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤ 2(1− β)2
L2

MKb

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2 + 2β2R
σ2

MKb
+ E

∥∥v0 −∇F (x0)
∥∥2,

where the last inequality is due to equation 14. Since we have

E
∥∥v0 −∇F (x0)

∥∥2 = E
∥∥∥∥ 1

M

M∑
j=1

∇F
j,Bj

0
(x0)−∇F (x0)

∥∥∥∥2 ≤ σ2

Mb0
.

Therefore, we have

β

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 2(1− β)2L2

MKb

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2 + 2β2R
σ2

MKb
+

σ2

Mb0
.

This implies that that

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 2(1− β)2L2

βMKbR

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2 + 2β
σ2

MKb
+

σ2

βRMb0
. (15)
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In addition, combining equation 7 and equation 9, we can get

E∥wj
r+1,k − xr∥2 ≤ 8e2K2η2E∥vr −∇F (xr)∥2

+
2e(1 +K)η2

6

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 + 2e(1 +K)η2
K−1∑
k=1

∥∇F (wj
r+1,k)∥

2

≤ 8e2K2η2E∥vr −∇F (xr)∥2 + 10eK2η2
1

K

K−1∑
k=1

E∥∇F (wj
r+1,k)∥

2. (16)

Therefore, we have

E∥xr+1 − xr∥2 = E∥wm̃
r+1,k+1 − xr∥2

≤ 8e2K2η2E∥vr −∇F (xr)∥2 + 10eK2η2
1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2. (17)

Thus, plugging equation 17 into equation 15, we can get

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 160L2K2η2

βMKb

1

R

R−1∑
r=0

(
E∥vr −∇F (xr)∥2 +

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2

)
+ 2β

σ2

MKb
+

σ2

βRMb0

≤ 1

24e+ 1

1

R

R−1∑
r=0

(
E∥vr −∇F (xr)∥2 +

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2

)
+ 2β

σ2

MKb
+

σ2

βRMb0
,

where the last inequality is due to the fact that η ≤
√
βMKb/(C ′′LK). Thus, we have

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 1

24e

1

R

R−1∑
r=0

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2 + 4β

σ2

MKb
+ 2

σ2

βRMb0
. (18)

Combining equation 12 and equation 18, we can obtain

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

1

2
E∥∇F (x̃)∥2 + 48eβ

σ2

MKb
+ 24e

σ2

βRMb0
,

which implies

E∥∇F (x̃)∥2 ≤ 8

RKη

(
F (x0)− F (x∗)

)
+ 96eβ

σ2

MKb
+ 48e

σ2

βRMb0
. (19)

Note that we have the following requirements for the stepsize η: η ≤ 1/(4L), η ≤ 1/(CKτ),
η ≤

√
b/(C ′√KL), η ≤

√
βMKb/(C ′′LK). Plugging these requirements, we can get

E∥∇F (x̃)∥2 ≤ C1

(
∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+
∆L

R
√
βMKb

+ β
σ2

MKb
+

σ2

βRMb0

)
. (20)
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Therefore, if we choose b0 = KR and

β = max

{
1

R
,
(∆L)2/3(MKb)1/3

σ4/3R2/3

}
=: max{β1, β2},

we can obtain,

E∥∇F (x̃)∥2 ≤ C1

(
∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+
∆L

R
√
β2MKb

+ (β1 + β2)
σ2

MKb
+

σ2

β1MKR2

)
.

which simplifies to,

E∥∇F (x̃)∥2 ≤ C1

(
∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+

(
σ∆L

MKbR

)2/3

+
σ2

MKbR

)
. (21)

Since we need to ensure that β ≤ 1, we require the following assumption for β2 ≤ 1 (R ≥ 1 w.l.o.g.),

∆L

R
≤ σ2√

MKb
.

This concludes the proof of Theorem B.1 (a).
Deterministic case: Note that if each client m ∈ [M ] has a deterministic oracle O2,L,0

Fm
, we can

choose β = 1, and according to equation 12, we can obtain

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

12e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2, (22)

where we have the following requirements of stepsize η: η ≤ 1/(4L), η ≤ 1/(CKτ). Furthermore,
we have vt = ∇F (xr), which implies that

E∥∇F (x̃)∥2 ≤ C4

(
∆τ

R
+

∆L

KR

)
.

This concludes the proof of Theorem B.1 (b).
In the following, we discuss how to obtain the result in Figure 1 when each client m ∈ [M ] has

a stochastic oracle O2,L,σ
Fm

. We always assume that τ ≤ L and without loss of the generality, we
assume b = 1, and ignore all the dependence on constants. According to equation 20, if we choose
β, b0 such that

β
σ2

MKb
≤ ϵ and

σ2

βRMϵ
≤ b0, (23)

we can obtain

E∥∇F (x̃)∥2 ≤ C5

(
∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+
∆L

R
√
βMKb

+ ϵ

)
. (24)

Therefore, to achieve E∥∇F (x̃)∥2 ≤ ϵ, we need the following communication complexity

R = C3

(
∆τ

ϵ
+

∆L

Kϵ
+

∆L

ϵ
√
Kb

+
∆L

ϵ
√
βMKb

)
.
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Furthermore,the gradient complexity of Algorithm 1 is N =MbKR+ bK +Mb0. If we have

Mb0 ≤ N, (25)

we have the following gradient complexity:

N = C4MbKR = C4

(
MbK∆τ

ϵ
+
Mb∆L

ϵ
+
M∆L

√
Kb

ϵ
+

∆L
√
MKb

ϵ
√
β

)
.

Note that we want to keep the R = ∆τ/ϵ while minimizing N , i.e., to obtain N close to ∆Lσ/ϵ3/2.
Recall that we have

R =
∆τ

ϵ
+

∆L

ϵ
√
K

+
∆L

ϵ
√
βMK

and N =
MK∆τ

ϵ
+
M∆L

√
K

ϵ
+

∆L
√
MK

ϵ
√
β

.

To achieve R = ∆τ/ϵ, we need

K ≥ max

{
L2

τ2
,

L2

βMτ2

}
. (26)

Green regime: We want to achieve best of both worlds, i.e., R = ∆τ/ϵ and N = ∆Lσ/ϵ3/2.
According to N , we need to have

K ≤ max

{
L

τ
· σ

Mϵ1/2
,
σ2

M2ϵ
,
σ2β

Mϵ

}
. (27)

Therefore, combining equation 26 and equation 27, we can obtain

ϵ1/2 ≤ στ

LM
and β ≥ Lϵ1/2

στ
.

In addition, according to equation 23, we have

β ≤ ϵMK

σ2
≤ ϵN

Rσ2
=
Lϵ1/2

στ
.

Therefore, we can choose β = Lϵ1/2/(στ), and this will lead to

K =
σL

Mτ
√
ϵ
.

In addition, according to equation 23 and equation 25, we have

b0 =
σ3

∆LMϵ1/2
,

and we need

σ3

∆Lϵ1/2
≤ σ2

ϵ
≤ ∆Lσ

ϵ3/2
,
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which will hold if we have ϵσ2 ≤ (∆L)2.
To summarize, if we have ϵ1/2 ≤ στ/(LM), Lϵ1/2 ≤ στ (ϵ ≤ σ2), and ϵσ2 ≤ (∆L)2, we have

R =
∆τ

ϵ
and N =

∆Lσ

ϵ3/2

if we choose K = σL/(Mτϵ1/2) ≥ 1 (Mϵ1/2 ≤ σ), b0 = σ3/(L∆Mϵ1/2), β = Lϵ1/2/(στ) (always less
than 1 in this regime). This gives us the green regime in Figure 1.
Orange regime: In this regime, we still want to keep the R = ∆τ/ϵ while minimizing N . Since we
have ϵ1/2 ≥ στ/(LM), we cannot make N = ∆σL/ϵ3/2. Thus, according to equation 26, we have

N =
ML∆

ϵ
· L
τ
+

√
ML∆√
βϵ

· L
τ
+
ML∆

ϵ
· L

τβM
.

By choosing β = 1/M , we can get

N =
ML∆

ϵ
· L
τ
.

And we have K = L2/τ2. Furthermore, according to equation 23 and equation 25, we have

σ2τ2

M2L2
≤ ϵ, b0 =

σ2

∆τ
,
Mσ2

∆τ
≤ ML∆

ϵ
· L
τ

where the first inequality holds due to ϵ1/2 ≥ στ/(LM) and the last one holds if we have ϵσ2 ≤ (L∆)2.
To summarize, if we have ϵ1/2 ≥ στ/(LM) and ϵσ2 ≤ (∆L)2, we have

R =
∆τ

ϵ
and N =

ML∆

ϵ
· L
τ
,

if we choose K = L2/τ2, b0 = σ2/(∆τ).
Red region: If we have ϵ ≥ ∆τ , then we only need R = 1, and thus we have N ≥ML2∆2/ϵ2.

C Mini-batch STORM

In this section, we present the convergence guarantee of mini-batch STORM for completeness. More
specifically, if we choose the number of local update to be one in Algorithm 1, our method will
reduce to mini-batch STORM. As a result, we have the following convergence guarantee.

Theorem C.1. Suppose {Fm}m∈[M ] ∈ F2
M (L,∆, τ) for L,∆, τ ≥ 0 then, if each client m ∈ [M ] has

a stochastic oracle O2,L,σ
Fm

, then the output x̃ of mini-batch STORM using β = (∆L)2/3(MK)1/3

σ4/3R2/3 ≤ 1,

b0 = min
{

σ4/3(RK)2/3

(∆L)2/3M1/3 ,
σ8/3(KR)1/3

(∆L)4/3M2/3

}
, and η = min

{
1
L ,

(βM)1/2

LK1/2

}
satisfies

E∥∇F (x̃)∥2 ≤ c1 ·

(
∆L

R
+

σ2

MKR
+

(
∆σL

RMK

)2/3
)
,

where c1 is a numerical constant.
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Proof of Theorem C.1. The proof of this result directly follows the proof of Theorem B.1. We can
just set K = 1, let τ = L, and ignoring the ∆L/(R

√
Kb) term (which appears when local updates

K > 1) in equation 21 to get

E∥∇F (x̃)∥2 ≤ C1

(
∆L

R
+

σ2

MbR
+

(
σ∆L

MbR

)2/3)
provided that

β =
(∆L)2/3(Mb)1/3

σ4/3R2/3
≤ 1.

Finally, if we choose the batch size to be the number of updates in the local update algorithms, i.e.,
b = K, we obtain that

E∥∇F (x̃)∥2 ≤ C1

(
∆L

R
+

σ2

MKR
+

(
∆σL

RMK

)2/3)
,

and we have

β =
(∆L)2/3(MK)1/3

σ4/3R2/3
≤ 1, b0 = min

{
σ4/3(RK)2/3

(∆L)2/3M1/3
,
σ8/3(KR)1/3

(∆L)4/3M2/3

}
.

Note that C1, C2 are numerical constants.

D Proof of Convergence for Algorithm 2

As we discussed before, we can adapt Algorithm 1 to the partial participation setting, and we detail
our method in Algorithm 2. Now, we provide the convergence guarantee of Algorithm 2.

Proof of Theorem 4.3. The proof of the theorem mainly follows the proof in Theorem B.1. As
before, we prove the result of using the mini-batch gradient with batch size b, which is a more
general result. More specifically, the proof for local updates will not change, and we can get the
following result according to equation 12

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

12e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2. (28)

For the variance reduction term vr, we have

vr =
1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr) + (1− β)

(
vr−1 −

1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr−1)

)
,

thus we obtain that

vr −∇F (xr) = (1− β)
(
vr−1 −∇F (xr−1)

)
+ β

(
1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr)−∇F (xr)

)

+ (1− β)

(
1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr)−

1

|Sr|
∑
j∈Sr

F
j,Bj

r
(xr−1) +∇F (xr−1)−∇F (xr)

)
.
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Therefore, consider the conditional expectation up to r, we have

Er

∥∥vr −∇F (xr)
∥∥2

≤ (1− β)2Er

∥∥vr−1 −∇F (xr−1)
∥∥2

+ 2β2Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr)−∇F (xr)

∥∥∥∥2
+ 2(1− β)2Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr)−

1

|Sr|
∑
j∈Sr

F
j,Bj

r
(xr−1) +∇F (xr−1)−∇F (xr)

∥∥∥∥2
≤ (1− β)2Er

∥∥vr−1 −∇F (xr−1)
∥∥2 + 2β2

(
2σ2

mKb
+

2ζ2

m

)
+ 4(1− β)2

(
L2

mKb
+
τ2

m

)
Er

∥∥xr − xr−1

∥∥2, (29)

where the last inequality is due to the following results. First of all, we have

Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr)−∇F (xr)

∥∥∥∥2 = Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr)−

1

|Sr|
∑
j∈Sr

∇Fj(xr)

+
1

|Sr|
∑
j∈Sr

∇Fj(xr)−∇F (xr)
∥∥∥∥2

≤ 2Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr)−

1

|Sr|
∑
j∈Sr

∇Fj(xr)

∥∥∥∥2
+ 2Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇Fj(xr)−∇F (xr)
∥∥∥∥2

≤ 2
σ2

mKb
+ 2

ζ2

m
, (30)

where the last inequality is due to the independence between j ∈ Sr with |Sr| = m, each client j
has the stochastic oracle O2,L,σ

Fj
, and Fj ∈ F1

P(L,∆, ζ) with ζ first-order heterogeneity.
In addition, we have

Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr)−

1

|Sr|
∑
j∈Sr

∇F
j,Bj

r
(xr−1) +∇F (xr−1)−∇F (xr)

∥∥∥∥2
= Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

(
∇F

j,Bj
r
(xr)−∇F

j,Bj
r
(xr−1) +∇Fj(xr−1)−∇Fj(xr)

)∥∥∥∥2
+ Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

(
∇Fj(xr−1)−∇Fj(xr)

)
−∇F (xr−1) +∇F (xr)

∥∥∥∥2
≤
(

2L2

mKb
+

2τ2

m

)
Er

∥∥xr − xr−1

∥∥2,
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where the first equality is due to the independence of the random variables, and the last inequality
comes from the following two derivations:

Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

(
∇F

j,Bj
r
(xr)−∇F

j,Bj
r
(xr−1) +∇Fj(xr−1)−∇Fj(xr)

)∥∥∥∥2
=

1

|Sr|2
Er

∑
j∈Sr

∥∥∥∥∇Fj,Bj
r
(xr)−∇F

j,Bj
r
(xr−1) +∇Fj(xr−1)−∇Fj(xr)

∥∥∥∥2
≤ 2L2

mKb
Er

∥∥xr − xr−1

∥∥2,
where the equality comes from the independence of each random variable, the inequality is due to
the fact Kb samples are i.i.d. and smoothness assumption. On the other hand, we have

Er

∥∥∥∥ 1

|Sr|
∑
j∈Sr

(
∇Fj(xr−1)−∇Fj(xr)

)
−∇F (xr−1) +∇F (xr)

∥∥∥∥2
≤ 2τ2

m
Er

∥∥xr − xr−1

∥∥2,
where the inequality is due to the independence between j ∈ Sr, and the second-order τ -heterogeneity.

Therefore, taking expectations over all iterations for equation 29, we can get

E
∥∥vr −∇F (xr)

∥∥2 ≤ (1− β)2E
∥∥vr−1 −∇F (xr−1)

∥∥2 + 2β2
(

2σ2

mKb
+

2ζ2

m

)
+ 4(1− β)2

(
L2

mKb
+
τ2

m

)
E
∥∥xr − xr−1

∥∥2. (31)

Furthermore, we have

β

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − (1− β)

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R∑
r=1

E
∥∥vr −∇F (xr)

∥∥2 − (1− β)

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vR −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤
R∑

r=1

E
∥∥vr −∇F (xR)

∥∥2 − (1− β)2
R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vr −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤ 4(1− β)2
(

L2

mKb
+
τ2

m

)R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2 + 2β2R

(
2σ2

mKb
+

2ζ2

m

)
+ E

∥∥v0 −∇F (x0)
∥∥2,
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where the last inequality is due to equation 31. Furthermore, according to equation 30, we have

E
∥∥v0 −∇F (x0)

∥∥2 = E
∥∥∥∥ 1

m0

∑
j∈S0

∇F
j,Bj

0
(x0)−∇F (x0)

∥∥∥∥2 ≤ 2ζ2

m0
+

2σ2

m0b0
.

Therefore, we have

β
R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 4(1− β)2
(

L2

mKb
+
τ2

m

)R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2
+ 2β2R

(
2σ2

mKb
+

2ζ2

m

)
+

2ζ2

m0
+

2σ2

m0b0
.

This implies that that

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 4(1− β)2
(

L2

βmKb
+

τ2

βm

)
1

R

R−1∑
r=0

E
∥∥xr+1 − xr

∥∥2
+ 2β

(
2σ2

mKb
+

2ζ2

m

)
+

2ζ2

βRm0
+

2σ2

βRm0b0
. (32)

In addition, according to equation 17, we have

E∥xr+1 − xr∥2 ≤ 8e2K2η2E∥vr −∇F (xr)∥2 + 10eK2η2
1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2. (33)

Thus, plugging equation 33 into equation 32, we can get

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 160K2η2

β

(
L2

mKb
+
τ2

m

)
1

R

R−1∑
r=0

(
E∥vr −∇F (xr)∥2 +

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2

)
+ 2β

(
2σ2

mKb
+

2ζ2

m

)
+

2ζ2

βRm0
+

2σ2

βRm0b0

≤ 1

24e+ 1

1

R

R−1∑
r=0

(
E∥vr −∇F (xr)∥2 +

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2

)
+ 2β

(
2σ2

mKb
+

2ζ2

m

)
+

2ζ2

βRm0
+

2σ2

βRm0b0

where the last inequality is due to the fact that η ≤
√
βmKb/(C ′′LK) and η ≤

√
βm/(C ′′τK).

Thus, we have

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 1

24e

1

R

R−1∑
r=0

1

K

K−1∑
k=1

E∥∇F (wm̃
r+1,k)∥2

+ 4β

(
2σ2

mKb
+

2ζ2

m

)
+

4ζ2

βRm0
+

4σ2

βRm0b0
. (34)

37



Combining equation 28 and equation 34, we can obtain

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

1

2
E∥∇F (x̃)∥2

+ 48eβ

(
2σ2

mKb
+

2ζ2

m

)
+ 48e

(
ζ2

βRm0
+

σ2

βRm0b0

)
,

which implies

E∥∇F (x̃)∥2 ≤ 8

RKη

(
F (x0)− F (x∗)

)
+ 96eβ

(
2σ2

mKb
+

2ζ2

m

)
+ 96e

(
ζ2

βRm0
+

σ2

βRm0b0

)
. (35)

Note that we have the following requirement for the stepsize η: η ≤ 1/(4L), η ≤ 1/(CKτ),
η ≤

√
b/(C ′√KL), η ≤

√
βmKb/(C ′′LK), η ≤

√
βm/(C ′′τK). Plugging the requirement of the

step-size η, we get (ignoring constants)

E∥∇F (x̃)∥2 ≤ ∆τ

R
+

∆τ

R
√
βm

+
∆L

KR
+

∆L

R
√
Kb

+
∆L

R
√
βmKb

+ β
σ2

mKb
+

σ2

βRm0b0
+ β

ζ2

m
+

ζ2

βRm0

=
∆τ

R
+

∆

R
√
βm

(
τ +

L√
Kb

)
+

∆L

KR
+

∆L

R
√
Kb

+ β
σ2

mKb
+

σ2

βRm0b0
+ β

ζ2

m
+

ζ2

βRm0

Let m0 = mR and b0 = K, so that m0b0 = mKR (i.e., we can implement the algorithm in the
intermittent communication setting) and β be set as follows,

β = max

 1

R
,

(
∆(τ + L/

√
Kb)

√
m

R(σ2/Kb+ ζ2)

)2/3
 =: max{β1, β2}.

then we have (ignoring numerical constants),

E∥∇F (x̃)∥2 ≤ ∆τ

R
+

∆L

KR
+

∆L

R
√
Kb

+
∆

R
√
β2m

(
τ +

L√
Kb

)
+ (β1 + β2)

(
σ2

mKb
+
ζ2

m

)
+

σ2

β1mKR2
+

ζ2

β1mR2
,

≤ ∆τ

R
+

∆L√
KbR

+
σ2

mKbR
+

(
σ∆L

mKbR

)2/3

+
ζ2

mR
+

(
ζ∆τ

mR

)2/3

+

(
∆(στ + Lζ)

m
√
KbR

)2/3

.

Further note that to get the theorem statement in Theorem 4.3, we need to ensure β2 ≤ 1 (R > 1
w.l.o.g.) which gives the following condition that we state in Theorem 4.3,

∆(τ + L/
√
Kb)

√
m

R
≤ σ2

Kb
+ ζ2.

Mini-batch STORM: As before, we can get the convergence of mini-batch STORM by setting
local update steps to be 1, τ = L, ignoring the

√
K dependence term, and choosing a mini-batch

size of bK compared with the local update algorithm. Therefore, the mini-batch STORM has the
following convergence guarantee for partial participation

E∥∇F (x̃)∥2 ≤ ∆L

R
+

σ2

mKR
+

(
σ∆L

m
√
KbR

)2/3

+
ζ2

mR
+

(
ζ∆L

mR

)2/3

.
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Deterministic case: Note that if each client n ∈ [M ] has a deterministic oracle O2,L,0
Fn

, suppose
b = b0 = 1, we can choose

β = max

{
1

R
,

(
∆τ

√
m

ζ2R

)2/3
}
, m0 = mR, η = min

{
1

L
,

1

Kτ
,

√
βm

τK

}
,

and we can get (ignoring the dependence on some numerical constants)

E∥∇F (x̃)∥2 ≤ ∆τ

R
+

∆L

KR
+

ζ2

mR
+

(
ζ∆τ

mR

)2/3

.

Oracle complexity in Table 2 for mini-batch STORM.
We need following many communication rounds to achieve ϵ stationarity:

∆L

ϵ
+

σ2

mKϵ
+

σ∆L

mK1/2ϵ3/2
+
ζ2

mϵ
+

ζ∆L

mϵ3/2
.

Recalling the assumptions for table 2, since ϵ1/2 ⪯ ζ/m we can ignore the first term, since
ϵ1/2 ⪯ ∆L/σ we can ignore the second term, and since ϵ1/2 ⪯ ∆τ/ζ ⪯ ∆L/ζ we can also ignore the
fourth term. This leaves us the following communication complexity,

σ∆L

mK1/2ϵ3/2
+

ζ∆L

mϵ3/2
.

Thus to get the best communication complexity of order 1/ϵ3/2 we choose K ∼= max{1, σ2/ζ2} which
simplifies to,

R ∼=
(σ + ζ)∆L

mϵ3/2

Then the oracle complexity is of the order

m · σ∆L
mϵ3/2

+m
σ2

ζ2
· ∆Lζ

mϵ3/2
,

where we chose K ∼= 1 for the first term and K ∼= σ2/ζ2 for the second term. This simplifies to,

N ∼=
σ2∆L

ζϵ3/2
+
σ∆L

ϵ3/2
∼=
σ∆L

ϵ3/2
·
(
1 +

σ

ζ

)
.

Oracle complexity in Table 2 for CE-LSGD.
We need the following many communication rounds to achieve ϵ stationarity:

∆τ

ϵ
+

∆L√
Kϵ

+
σ2

mKϵ
+

σ∆L

mKϵ3/2
+
ζ2

mϵ
+

ζ∆τ

mϵ3/2
+

∆(ζL+ στ)

m
√
Kϵ3/2

.

Recalling the assumptions for table 2, since ϵ1/2 ⪯ ζ/m we can ignore the first and second terms,
since ϵ1/2 ⪯ ∆L/σ we can ignore the third term, and since ϵ1/2 ⪯ ∆τ/ζ ⪯ ∆L/ζ we can also ignore
the fifth term. This gives us the following simplified communication complexity,

σ∆L

mKϵ3/2
+

ζ∆τ

mϵ3/2
+

∆(ζL+ στ)

m
√
Kϵ3/2

.
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Note that because of the second term we are bound to have a communication complexity of
order 1/ϵ3/2, just like MB-STORM. What needs to be figured out, is how to correctly balance the
K in other terms. If we choose K ∼= 1, we will get both communication and oracle complexity of
the order 1/ϵ3/2. All we need to do is account for the relative scaling of the problem parameters
now. In particular we choose K such that

ζ∆τ

mϵ3/2
∼=

σ∆L

mKϵ3/2
,
ζ∆τ

mϵ3/2
∼=

∆(ζL+ στ)

m
√
Kϵ3/2

,

Then we need to ensure

K ∼= max

{
σL

ζτ
,
L2

τ2
,
σ2

ζ2

}
.

This ensures that,

R ∼=
ζ∆τ

mϵ3/2
,

and the oracle complexity is upper bounded by,

N ∼= mK
ζ∆τ

mϵ3/2
⪯ σ∆L

ϵ3/2
+
ζ∆L

ϵ3/2
· L
τ
+
σ∆τ

ϵ3/2
· σ
ζ
,

∼=
ζ∆L

ϵ3/2
· L
τ
+
σ∆L

ϵ3/2
·
(
1 +

στ

ζL

)
,

which recovers the oracle complexity in Table 2.

E CE-LSGD with HvP

In this section we present a version of our algorithm 1 for the online setting. A motivating
example for this discussion is the distributed stochastic optimization (DSO) problem, where for
each client m ∈ [M ], Fm(·) := Ez∼Dm [f(·; z)] and only client m can sample from Dm. In this
model, if for all z ∼ supp (()Dm), f(·; z) ∈ F(L,∆) and Ez∼Dm [∥∇f(·; z)−∇F (·; z)∥2] ≤ σ2,
then we can implement O2,L,σ

Fm
at points x, y ∈ Rd by first sampling z ∼ Dm and then returning

(f(x; z), f(y; z),∇f(x; z),∇f(y; z)). DSO captures problems in cross-device Federated learning (FL)
(McMahan et al., 2016; Kairouz et al., 2019), where the functions f(·; z) are loss functions and z
denoting a data-sample is observed in an online fashion. The devices don’t store the data for future
queries so all the queries must be made as soon as f(·; z) becomes available. Most variance-reduced
algorithms only require access to f(·; z) at the current and previous models. Thus, the two-point
oracle can be implemented even in the online setting by always storing two models on memory. In
certain settings, though, this is not possible as the model sizes are too big, and two different models
can not be stored on the device. To alleviate this, we propose an extension of our Algorithm 1,
which uses a stochastic Hessian vector product oracle instead of the multi-point oracle to implement
variance reduction (Arjevani et al., 2020).
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For ease of presentation, we first introduce some definitions. We assume that for all m ∈ [M ],

Fm ∈ F(L,L2,∆) :=

{
G ∈ F(L)s.t. G is twice-differentiable, G(0)− inf

x∈RRd
G(x) ≤ ∆

and sup
x,y∈Rd

∥∇2G(x)−∇2G(y)∥ ≤ L2∥x− y∥

}
.

Similarly, we denote F ∈ F(L,L2,∆) and define the problem class F2
M(L,L2,∆, τ) for

{Fm}m∈[M ] with bounded second-order τ -heterogeneity.

Definition E.1 (Stochastic Hessian-vector Product Oracle). Given a function G ∈ F(L,L2,∆),
QL,σ

G : (Rd)2 × Z → R × (Rd)2 is a stochastic Hessian-vector Product oracle if for some dis-
tribution D on Z, and for any x, v ∈ Rd, the oracle samples a random seed z ∼ D and returns
QL,σ

G (x, v, z) = (f(x; z), g(x; z), h(x; z)v) such that:

(a) Ez∈D[(f(x; z), g(x; z), h(x; z)v)] = (G(x),∇G(x),∇2G(x)v)

(b) Ez∼D

[
∥g(x; z)−∇G(x)∥2

]
≤ σ2,

(c) for all x, y ∈ Rd, Ez∼D [∥g(x; z)− g(y; z)∥] ≤ L ∥x− y∥,

(d) Ez∼D

[∥∥h(x; z)v −∇2G(x)v
∥∥2] ≤ L2 ∥v∥2.

Note that this stochastic oracle doesn’t require simultaneous queries at the same z. We state
the result of our algorithm with HvP below.

Theorem E.2. Suppose {Fm}m∈[M ] ∈ F2
M (L,L2,∆, τ), and each client m ∈ [M ] has a stochastic

HvP oracle QL,σ
Fm

, then Algorithm 3 using η = c1 ·min{1/L, 1/(Kτ)} satisfies

E∥∇F (x̃)∥2 ≤ c2

(
L∆

RK
+
τ∆

R
+ ϵ

)
.

Furthermore, if we choose 1/R ≤ β = ηK
√
ϵ ·max{M1/2ϵ1/4L

1/2
2 /σ, L/σ} ≤ 1 and assume ϵ1/2M ≤

L2/L2, with probability at least 7/8, Algorithm 3 uses the following number of oracle calls to achieve
ϵ-approximate stationary point

N = c3

(
∆σL

ϵ3/2
+
η∆L2K2

ϵ
+
Mη∆L2K

ϵ
+
M∆L

ϵ
+
M∆Kτ

ϵ

)
,

where c1, c2, c3 are numerical constants. In addition, if we have ϵ1/4M ≤ σ1/2, ϵ1/4L ≤ τσ1/2, and
ϵ ≤ σ2, then Algorithm 3 using K = σ1/2/ϵ1/4 can achieve the ϵ-approximate stationary point with
the following communication and oracle complexities

R ≤ c4
∆τ

ϵ
and N = c5

∆Lσ

ϵ3/2
,

where c4, c5 are numerical constants.
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Algorithm 3 CE-LSGD with Hessian-vector Product

input Initialization x0, communication round R, local steps K, step size η, momentum β ∈ [0, 1]
1: Let x−1 = x0
2: for r = 0, 1, . . . , R− 1 do
3: if r = 0 set β = 1,K = 1, B = B0 else set β,K as the input values, B = Br, where

Br = C1max
{
L2∥xr − xr−1∥2/(Mβϵ), L2∥xr − xr−1|2/(β

√
ϵ), σ2β/(Mϵ)

}
4: Communicate (send) (xr, xr−1) to clients
5: on client m ∈ [M ] do
6: Compute ∇Fm,Bm

r
(xr), where |Bm

r | = B, and Hm
r = HV P (xr, xr−1, B,m)

7: Communicate (rec)
(
∇Fm,Bm

r
(xr), H

m
r

)
to the server

8: end on client
9: vr =

β
M

∑M
m=1∇Fm,Bm

r
(xr) + (1− β)

(
vr−1 − 1

M

∑M
m=1H

m
r

)
10: Communicate (send) (xr, vr) to client m̃r, where m̃r ∼ Unif ([M ])
11: on client m̃ do
12: wm̃r

r+1,1 := wm̃r
r+1,0 := xr, v

m̃r
r,0 := vr

13: for k = 1, . . . ,K do

14: Let br,k = C2K ·max
{
η2L2K,L2∥wm̃r

r+1,k − wm̃r
r+1,k−1∥

2/
√
ϵ
}
when k > 1

15: vm̃r
r,k = vm̃r

r,k−1 +HV P (wm̃r
r+1,k, w

m̃r
r+1,k−1, br,k, m̃)

16: wm̃r
r+1,k+1 = wm̃r

r+1,k − ηvm̃r
r,k

17: end for
18: Communicate (rec)

(
wm̃r
r+1,K+1

)
to the server

19: end on client
20: Let xr+1 = wm̃r

r+1,K+1

21: end for
output Choose x̃ uniformly from {wm̃r

r,k }r∈[R],k∈[K]

Algorithm 4 Hessian-vector Products (HVP) Estimator

input Parameters x, xprev, batch size b0, client index j
1: Let b = ⌈b0⌉
2: Let xl = l

bx+
(
1− l

b

)
xprev for l ∈ {0, . . . , b}

3: H =
∑b

l=1∇2f(xl−1; zl)(x
l − xl−1), where zl ∼i.i.d. Dj

output H

To interpret this result we can consider the simpler distributed stochastic optimization setting,
where Fm = Ez∼Dm [f(x; z)] and f(·; z) is L-Lipschitz. In this setting, we can easily implement the
HvP oracle. Then, Algorithm 3 attains the same order of communication and oracle complexities as
Algorithm 1 (see Theorem B.1) without the requirement of simultaneous queries.

In this section, we provide the proof of Theorem E.2.

Proof of Theorem E.2. In the following discussion, we use {Ci}16i=1 to denote numerical constants.

First of all, we will bound the estimation error E
∥∥vjr,k −∇F (wj

r+1,k)
∥∥2. Consider the local updates
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for client j. We have

vjr,k = vjr,k−1 +

br,k∑
l=1

∇2fj(w
j,l−1
r+1,k, zl)(w

j,l
r+1,k − wj,l−1

r+1,k),

where wj,l
r+1,k is defined as

wj,l
r+1,k =

l

br,k
wj
r+1,k +

(
1− l

br,k

)
wj
r+1,k−1 for l ∈ {0, . . . , br,k}.

Therefore, we can get

vjr,k −∇F (wj
r+1,k) = vjr,k−1 +

br,k∑
l=1

∇2fj(w
j,l−1
r+1,k, zl)(w

j,l
r+1,k − wj,l−1

r+1,k)−∇F (wj
r+1,k)

= vjr,k−1 −∇F (wj
r+1,k−1)

+

br,k∑
l=1

(
∇2fj(w

j,l−1
r+1,k, zl)−∇2Fj(w

j,l−1
r+1,k)

)
(wj,l

r+1,k − wj,l−1
r+1,k)

+

br,k∑
l=1

∇2Fj(w
j,l−1
r+1,k)(w

j,l
r+1,k − wj,l−1

r+1,k) +∇F (wj
r+1,k−1)−∇F (wj

r+1,k).

Thus we can obtain that

E
∥∥vjr,k −∇F (wj

r+1,k)

∥∥∥∥2
≤ E

∥∥vjr,k−1 −∇F (wj
r+1,k−1)

+

br,k∑
l=1

∇2Fj(w
j,l−1
r+1,k)(w

j,l
r+1,k − wj,l−1

r+1,k) +∇F (wj
r+1,k−1)−∇F (wj

r+1,k)

∥∥∥∥2

+ E
∥∥∥∥ br,k∑

l=1

(
∇2fj(w

j,l−1
r+1,k, zl)−∇2Fj(w

j,l−1
r+1,k)

)
(wj,l

r+1,k − wj,l−1
r+1,k)

∥∥∥∥2
≤
(
1 +

1

K

)
E
∥∥vjr,k−1 −∇F (wj

r+1,k−1)
∥∥2

+ (1 +K)E
∥∥∥∥ br,k∑

l=1

∇2Fj(w
j,l−1
r+1,k)(w

j,l
r+1,k − wj,l−1

r+1,k) +∇F (wj
r+1,k−1)−∇F (wj

r+1,k)

∥∥∥∥2

+ E
∥∥∥∥ br,k∑

l=1

(
∇2fj(w

j,l−1
r+1,k, zl)−∇2Fj(w

j,l−1
r+1,k)

)
(wj,l

r+1,k − wj,l−1
r+1,k)

∥∥∥∥2.
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In addition, we have

E
∥∥∥∥ br,k∑

l=1

∇2Fj(w
j,l−1
r+1,k)(w

j,l
r+1,k − wj,l−1

r+1,k) +∇F (wj
r+1,k−1)−∇F (wj

r+1,k)

∥∥∥∥2

= E
∥∥∥∥ br,k∑

l=1

∇2Fj(w
j,l−1
r+1,k)(w

j,l
r+1,k − wj,l−1

r+1,k) +

br,k∑
l=1

(
∇Fj(w

j,l−1
r+1,k−1)−∇Fj(w

j,l
r+1,k)

)
+

br,k∑
l=1

(
∇F (wj,l−1

r+1,k−1)−∇F (wj,l
r+1,k)−∇Fj(w

j,l−1
r+1,k−1) +∇Fj(w

j,l
r+1,k)

)∥∥∥∥2

≤ b2r,k
L2
2∥w

j
r+1,k − wj

r+1,k−1∥
4

2b4r,k
+ 2τ2∥wj

r+1,k − wj
r+1,k−1∥

2

=
L2
2

2b2r,k
∥wj

r+1,k − wj
r+1,k−1∥

4 + 2τ2∥wj
r+1,k − wj

r+1,k−1∥
2,

where the inequality is due to each clientm ∈ [M ] has a stochastic HvP oracleQL,σ
Fm

and {Fm}m∈[M ] ∈
F2
M (L,L2,∆, τ). On the other hand, we have

E
∥∥∥∥ br,k∑

l=1

(
∇2fj(w

j,l−1
r+1,k, zl)−∇2Fj(w

j,l−1
r+1,k)

)
(wj,l

r+1,k − wj,l−1
r+1,k)

∥∥2
=

1

b2r,k

br,k∑
l=1

E
∥∥(∇2fj(w

j,l−1
r+1,k, zl)−∇2Fj(w

j,l−1
r+1,k)

)
(wj

r+1,k − wj
r+1,k−1)

∥∥∥∥2
≤ L2

br,k

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2,
where the equality is due to the independence of random variables and the definition of wj,l

r+1,k, and

the inequality comes from the stochastic HvP oracle QL,σ
Fm

. Combining these results, we can obtain

E
∥∥vjr,k −∇F (wj

r+1,k)
∥∥2 ≤ (1 + 1

K

)
E
∥∥vjr,k−1 −∇F (wj

r+1,k−1)
∥∥2 + 2(1 +K)τ2∥wj

r+1,k − wj
r+1,k−1∥

2

+ (1 +K)
L2
2

2b2r,k
∥wj

r+1,k − wj
r+1,k−1∥

4 +
L2

br,k

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2.
Therefore, using the above inequality recursively, we can obtain

E
∥∥vjr,k −∇F (wj

r+1,k)
∥∥2 ≤ eE

∥∥vjr,0 −∇F (wj
r+1,0)

∥∥2 + K∑
k=1

eL2

br,k
E
∥∥wj

r+1,k − wj
r+1,k−1

∥∥2
+

K∑
k=1

eKL2
2

b2r,k

∥∥wj
r+1,k − wj

r+1,k−1

∥∥4 + 4eKτ2
K∑
k=1

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2.
(36)
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Next, let’s consider the global variance reduction term vr. Recall that, we have

vr = β
1

M

M∑
j=1

∇F
j,Bj

r
(xr) + (1− β)vr−1 + (1− β)

1

M

M∑
j=1

Br∑
l=1

∇2fj(x
l−1
r , zjl )(x

l
r − xl−1

r ),

where xlr is defined as

xlr =
l

Br
xr +

(
1− l

Br

)
xr−1 for l ∈ {0, . . . , Br}.

Therefore, we have

vr −∇F (xr) = (1− β)
(
vr−1 −∇F (xr−1)

)
+ β

(
1

M

M∑
j=1

∇F
j,Bj

r
(xr)−∇F (xr)

)

+ (1− β)
( 1

M

M∑
j=1

Br∑
l=1

(
∇2fj(x

l−1
r , zjl )−∇2Fj(x

l−1
r )

)
(xlr − xl−1

r )
)

+ (1− β)
( 1

M

M∑
j=1

Br∑
l=1

∇2Fj(x
l−1
r )(xlr − xl−1

r ) +∇F (xr−1)−∇F (xr)
)
.

Thus we can obtain

E
∥∥vr −∇F (xr)

∥∥2 ≤ (1− β)2
(
1 +

β

2

)
E
∥∥vr−1 −∇F (xr−1)

∥∥2 + β2
σ2

MBr

+

(
1 +

2

β

)
(1− β)2

L2
2

4Br
2 ∥xr − xr−1∥4 + (1− β)2

L2

MBr
∥xr − xr−1∥2. (37)

Suppose we choose br,k as follows (here j is random sampled as in line 10 of Algorithm 3):

br,k = C1K ·max

{
η2L2K,

L2

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2
√
ϵ

}
.

Therefore, plugging br,k into equation 36, we can obtain

E
∥∥vjr,k −∇F (wj

r+1,k)
∥∥2 (38)

≤ eE
∥∥vjr,0 −∇F (wj

r+1,0)
∥∥2 + K∑

k=1

eL2

br,k

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2
+

K∑
k=1

eKL2
2

b2r,k

∥∥wj
r+1,k − wj

r+1,k−1

∥∥4 + 4eKτ2
K∑
k=1

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2
≤ eE

∥∥vjr,0 −∇F (wj
r+1,0)

∥∥2 + (4eK2τ2η2 + 1/24)
1

K

K∑
k=1

E∥vjr,k−1∥
2 + ϵ

≤ eE
∥∥vjr,0 −∇F (wj

r+1,0)
∥∥2 + (8eK2τ2η2 + 1/12)

1

K

K∑
k=1

E∥vjr,k−1 −∇F (wj
r+1,k)∥

2

+ (8eK2τ2η2 + 1/12)
1

K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 + ϵ. (39)
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If we choose η ≤ C2/(Kτ) and use the fact that wj
r+1,0 = wj

r+1,1 = xr, we can obtain

1

K

K∑
k=1

E∥vjr,k −∇F (wj
r+1,k)∥

2 ≤ 2eE∥vr −∇F (xr)∥2 +
1

6K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 + ϵ. (40)

Thus, according to equation 10, and plugging the result in equation 40, we can get

1

K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 ≤ 2

Kη

(
EF (xr)− EF (xjr+1,K+1)

)
+

3

K

K∑
k=1

E∥vjr,k −∇F (wj
r+1,k)∥

2

≤ 2

Kη

(
EF (xr)− EF (xjr+1,K+1)

)
+ 6eE

∥∥vjr,0 −∇F (wj
r+1,0)

∥∥2 + 3ϵ

+
1

2K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2.

Therefore, we can get

1

K

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 ≤ 4

Kη

(
EF (xr)− EF (xr+1)

)
+ 12eE∥vr −∇F (xr)∥2 + 6ϵ. (41)

Averaging equation 41 from t = 0, . . . , R− 1, we can obtain

1

RK

R−1∑
r=0

K∑
k=1

E∥∇F (wj
r+1,k)∥

2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

6e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2 + 6ϵ,

by the definition of x̃, we have

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xR)

)
+

6e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2 + 6ϵ. (42)

Suppose we choose Br as follows:

Br = C3 ·max

{
L2
∥∥xr − xr−1

∥∥2
Mβϵ

,
L2

∥∥xr − xr−1

∥∥2
β
√
ϵ

}
, (43)

Therefore, plugging Br into equation 37, we have

E
∥∥vr −∇F (xr)

∥∥2 ≤ (1− β/2)2E
∥∥vr−1 −∇F (xr−1)

∥∥2 + 2β2
σ2

MBr
+ 2βϵ,
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Furthermore, we have

β

2

t−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − (1− β/2)

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2
=

R∑
r=1

E
∥∥vr −∇F (xr)

∥∥2 − (1− β/2)

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vR −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤
R∑

r=1

E
∥∥vr −∇F (xr)

∥∥2 − (1− β/2)2
R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 − E
∥∥vR −∇F (xR)

∥∥2
+ E

∥∥v0 −∇F (x0)
∥∥2

≤ 2β2
R−1∑
r=0

σ2

MBr
+ 2Rβϵ+

σ2

MB0
,

which implies

1

R

R−1∑
r=0

E
∥∥vr −∇F (xr)

∥∥2 ≤ 2β
1

R

R−1∑
r=0

σ2

MBr
+ 2ϵ+

σ2

RβMB0
. (44)

Finally combining equation 42 and equation 44, we have

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xr)

)
+

6e

R

R−1∑
r=0

E∥vr −∇F (xr)∥2 + 6ϵ

≤ 4

RKη

(
EF (x0)− EF (xr)

)
+ 12eβ

1

R

R−1∑
r=0

σ2

MBr
+ 12eϵ+

6eσ2

RβMB0
.

If we have the following

Br =
σ2β

Mϵ
and B0 =

σ2

RβMϵ
, (45)

we can obtain

E∥∇F (x̃)∥2 ≤ 4

RKη

(
EF (x0)− EF (xr)

)
+ 30eϵ.

Note that we have η ≤ 1/(4L) and η ≤ C2/(Kτ). Therefore, we have

E∥∇F (x̃)∥2 ≤ C4

(
L∆

RK
+
τ∆

R
+ ϵ

)
, (46)

where ∆ = F (x0)− F (x∗). Therefore, to achieve ϵ accuracy, we have R ≤ C5

(
∆L/(Kϵ) + ∆τ/ϵ

)
,

where {Ci}5i=1 are numerical constants.
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Next, we are going to derive the number of oracle calls, i.e., gradient complexity and the number
Hessian-vector product queries. According to Algorithm 3, the number of Hessian-vector product
queries will be at the same order of the number of stochastic gradient evaluations. Therefore, we
only need to determine the gradient complexity of Algorithm 3.

First of all, according to the requirement in equation 45, we have the following gradient complexity
per client on the global updates

R∑
r=1

Br +B0 = R
σ2β

Mϵ
+

σ2

RβMϵ
≤ C6

∆σ2β

MKηϵ2
, (47)

where the last inequality comes from that β ≥ 1/R and R ≤ C7∆/(Kηϵ). In addition, according to
equation 43, we have

Br = C3 ·max

{
L2
∥∥xr − xr−1

∥∥2
Mβϵ

,
L2

∥∥xr − xr−1

∥∥2
β
√
ϵ

}
.

Furthermore, we have

E
∥∥xr − xr−1

∥∥2 = E∥xjr,K+1 − xr−1∥2

≤ 4eKη2
K−1∑
k=1

E∥vjr−1,k −∇F (wj
r,k)∥

2 + 4eKη2
K−1∑
k=1

E∥∇F (wj
r,k)∥

2

≤ 4eKη2
K−1∑
k=1

(
2eE

∥∥vr−1 −∇F (xr−1)
∥∥2 + 1

6K

K∑
k=1

E∥∇F (wj
r,k)∥

2 + ϵ
)

+ 4eKη2
K−1∑
k=1

E∥∇F (wj
r,k)∥

2

≤ 4e2K2η2E
∥∥vr−1 −∇F (xr−1)

∥∥2 + 4eK2η2ϵ

+
(
4eK2η2 + eKη2

) 1
K

K∑
k=1

E∥∇F (wj
r,k)∥

2,

where the first inequality is due to equation 7 and the second one comes from equation 40. Therefore,
averaging over R, by equation 44 and equation 46, we can obtain that

1

R

R∑
r=1

E
∥∥xr − xr−1

∥∥2 ≤ 13e2K2η2ϵ.

Therefore, we have (the extra gradient complexity is due to line 1 in Algorithm 4)

E

[
R∑

r=1

(Br + 1)

]
≤ C3

(
L2

Mβϵ
+

L2

β
√
ϵ

) R∑
r=1

E
∥∥xr − xr−1

∥∥2 +R

≤ 13eC3

(
L2

Mβϵ
+

L2

β
√
ϵ

)
RK2η2ϵ+R

≤ C8η

(
∆L2K

Mβϵ
+

∆L2K

β
√
ϵ

)
+ C8

∆L

Kϵ
+ C8

∆τ

ϵ
. (48)
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To choose the optimal value of β, let’s consider equation 47 and equation 48. Note that given
equation 48, we can use Markov’s inequality to show that (we will specify the probability later)

R∑
r=1

(Br + 1) ≤ C8η

(
∆L2K

Mβϵ
+

∆L2K

β
√
ϵ

)
+ C8

∆L

Kϵ
+ C8

∆τ

ϵ
. (49)

Therefore, combining equation 47 and equation 49, we have the following gradient complexity for
global updates

R∑
r=1

(Br + 1) +B0 = C9

(
∆σ2β

MKηϵ2
+ η

∆L2K

Mϵβ
+ η

∆L2K

β
√
ϵ

+
∆L

Kϵ
+

∆τ

ϵ

)
.

Solving for the β to achieve the smallest gradient complexity in terms of the dependence of ϵ, we

can get β = ηK
√
ϵ ·max{M1/2ϵ1/4L

1/2
2 /σ, L/σ}. Therefore, equation 47 implies that

R∑
r=1

Br +B0 ≤ C6

(
∆σL

Mϵ3/2
+

∆σL
1/2
2

M1/2ϵ5/4

)
, (50)

and equation 48 implies that

E

[
R∑

r=1

(Br + 1)

]
≤ C8

(
∆σL

Mϵ3/2
+

∆σL
1/2
2

M1/2ϵ5/4
+

∆L

Kϵ
+

∆τ

ϵ

)
(51)

In addition, if we have M ≤ L2/(ϵ1/2L2), we will have

E

[
R∑

r=0

(Br + 1)

]
≤ C10

(
∆σL

Mϵ3/2
+

∆L

Kϵ
+

∆τ

ϵ

)
. (52)

Next, let’s consider the local updates, we have

bjr,k = C1K ·max

{
η2L2,

L2

∥∥wj
r+1,k − wj

r+1,k−1

∥∥2
√
ϵ

}
.

Therefore, we have

R∑
r=1

K∑
k=1

(br,k + 1) = η2L2K2R ≤ C11
∆ηKL2

ϵ
,

where the inequality comes from the fact that R ≤ C7∆/(Kηϵ). In addition, we have∥∥wj
r+1,k − wj

r+1,k−1

∥∥2 = η2∥vjr,k−1∥
2

≤ η2
(∥∥vjr,k−1 −∇F (wj

r+1,k−1) +∇F (wj
r+1,k−1)

∥∥2)
≤ 2η2

∥∥vjr,k−1 −∇F (wj
r+1,k−1)

∥∥2 + 2η2
∥∥∇F (wj

r+1,k−1)
∥∥2

≤ 2Kη2
∥∥vr−1 −∇F (xr−1)

∥∥2 + 2Kη2
1

K

K∑
k=1

∥∇F (wj
r+1,k)∥

2.
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Therefore, averaging over R, by equation 44 and equation 46, we can obtain that (recall that we
have η = min{1/(4L), C2/(Kτ)})

1

R

R∑
r=1

K∑
k=1

E
∥∥wj

r+1,k − wj
r+1,k−1

∥∥2 ≤ 2K2η2ϵ+ 2K2η2ϵ ≤ 4K2η2ϵ.

Thus, we have

E

[
R∑

r=1

K∑
k=1

(br,k + 1)

]
≤ C1

L2√
ϵ
RK3η2ϵ+RK ≤ C12

(
η∆L2K

2

√
ϵ

+
∆L

ϵ
+

∆Kτ

ϵ

)
.

Hence, the local updates will contribute to the following gradient complexity per client in expectation:

E

[
R∑

r=1

K∑
k=1

(br,k + 1)

]
= C13

(
∆ηKL2

ϵ
+
η∆L2K

2

√
ϵ

+
∆L

ϵ
+

∆Kτ

ϵ

)
≤ C13

(
∆ηKL2

ϵ
+
η∆L2K2

Mϵ
+

∆L

ϵ
+

∆Kτ

ϵ

)
, (53)

where the inequality comes from the requirement that M ≤ L2/(ϵ1/2L2). As a result, let G denote
the total number of gradient complexity, combining equation 50, equation 51 and equation 53, we
have

E[G] = C14

(
∆σL

Mϵ3/2
+

∆ηKL2

ϵ
+
η∆L2K2

Mϵ
+

∆L

ϵ
+

∆Kτ

ϵ

)
.

Therefore, we have

E[N ] = C15

(
∆σL

ϵ3/2
+
η∆L2K2

ϵ
+
Mη∆L2K

ϵ
+
M∆L

ϵ
+
M∆Kτ

ϵ

)
.

Therefore, using Markov’s inequality, we have with probability at least 7/8,

N = C16

(
∆σL

ϵ3/2
+
η∆L2K2

ϵ
+
Mη∆L2K

ϵ
+
M∆L

ϵ
+
M∆Kτ

ϵ

)
.

Note that we require β ≤ 1, which implies that

M1/2ϵ3/4K ≤ σL

L
1/2
2

and ϵ1/2K ≤ σ.

Since we have M ≤ L2/(ϵ1/2L2), we can reduce to the following requirement

ϵ1/2K ≤ σ. (54)

Next, we are going to show that under certain conditions, CE-LSGD-HvP is able to achieve the
optimal communication complexity. In the following discussion, we ignore the dependence on the
numerical constants for simplicity. Recall that, we have the following communication complexity:

R =
∆L

Kϵ
+

∆τ

ϵ
.
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If we want to achieve N = ∆σL/ϵ3/2 gradient complexities, we need to have

K ≤ Lσ

MLϵ1/2
and K ≤ (σL)1/2

L1/2ϵ1/4
.

Recall that we have the following requirements M ≤ L2/(ϵ1/2L2) and ϵ
1/2K ≤ σ.

Case 1: if we have

M ≥ σ1/2

ϵ1/4
,

we can get

K =
σ

Mϵ1/2
.

We still need the requirement M ≤ L2/(ϵ1/2L2). Furthermore, we can get

R =
∆ML

σϵ1/2
+

∆τ

ϵ
.

And we have

N =
∆σL

ϵ3/2
+
M∆L

ϵ
+

∆Lστ

Lϵ3/2
.

If we further have M ≤ σL/(Lϵ1/2), we can get

N =
∆σL

ϵ3/2
+

∆Lστ

Lϵ3/2
.

Note that we also need R ≥ 1/β, which implies ∆L ≥ σϵ1/2.
Case 2: if we have

M ≤ σ1/2

ϵ1/4
,

we can get

K =
σ1/2

ϵ1/4
.

We still need the requirements M ≤ L2/(ϵ1/2L2) and ϵ
1/2 ≤ σ. Furthermore, we can get

R =
∆L

ϵ3/4σ1/2
+

∆τ

ϵ
.

And we have

N =
∆σL

ϵ3/2
+
M∆L

ϵ
+
M∆σ1/2τ

ϵ5/4
.

If we further have M ≤ σ/ϵ1/2, we can get

N =
∆σL

ϵ3/2
+

∆στ

ϵ3/2
.
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